




Derivatives
Analytics

with Python



For other titles in the Wiley Finance series
please see www.wiley.com/finance

http://www.wiley.com/finance


Derivatives
Analytics

with Python
Data Analysis, Models, Simulation,

Calibration and Hedging

YVES HILPISCH



This edition first published 2015
© 2015 John Wiley & Sons Ltd

Registered office
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United
Kingdom

For details of our global editorial offices, for customer services and for information about how to apply
for permission to reuse the copyright material in this book please see our website at www.wiley.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior
permission of the publisher.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in
print-on-demand. If this book refers to media such as a CD or DVD that is not included in the version
you purchased, you may download this material at http://booksupport.wiley.com. For more information
about Wiley products, visit www.wiley.com.

Designations used by companies to distinguish their products are often claimed as trademarks. All
brand names and product names used in this book are trade names, service marks, trademarks or
registered trademarks of their respective owners. The publisher is not associated with any product or
vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts
in preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is
not engaged in rendering professional services and neither the publisher nor the author shall be liable
for damages arising herefrom. If professional advice or other expert assistance is required, the services
of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Hilpisch, Yves J.
Derivatives analytics with Python : data analysis, models, simulation, calibration and hedging /

Yves Hilpisch.—1
pages cm.—(The Wiley finance series)

Includes bibliographical references and index.
ISBN 978-1-119-03799-6 (hardback)

1. Derivative securities. 2. Hedging (Finance) 3. Python (Computer program language)
I. Title.

HG6024.A3H56 2015
332.64′5702855133—dc23 2015010191

A catalogue record for this book is available from the British Library.

ISBN 978-1-119-03799-6 (hardback) ISBN 978-1-119-03793-4 (ebk)
ISBN 978-1-119-03800-9 (ebk) ISBN 978-1-119-03801-6 (obk)

Cover Design: Wiley
Cover Images: Top image (c)iStock.com/agsandrew; Bottom image (c)iStock.com/stocksnapper

Set in 10/12pt Times by Aptara Inc., New Delhi, India
Printed in Great Britain by TJ International Ltd, Padstow, Cornwall, UK

http://www.wiley.com
http://booksupport.wiley.com
http://www.wiley.com


Contents

List of Tables xi

List of Figures xiii

Preface xvii

CHAPTER 1
A Quick Tour 1
1.1 Market-Based Valuation 1
1.2 Structure of the Book 2
1.3 Why Python? 3
1.4 Further Reading 4

PART ONE
The Market

CHAPTER 2
What is Market-Based Valuation? 9
2.1 Options and their Value 9
2.2 Vanilla vs. Exotic Instruments 13
2.3 Risks Affecting Equity Derivatives 14

2.3.1 Market Risks 14
2.3.2 Other Risks 15

2.4 Hedging 16
2.5 Market-Based Valuation as a Process 17

CHAPTER 3
Market Stylized Facts 19
3.1 Introduction 19
3.2 Volatility, Correlation and Co. 19
3.3 Normal Returns as the Benchmark Case 21

v



vi CONTENTS

3.4 Indices and Stocks 25
3.4.1 Stylized Facts 25
3.4.2 DAX Index Returns 26

3.5 Option Markets 30
3.5.1 Bid/Ask Spreads 31
3.5.2 Implied Volatility Surface 31

3.6 Short Rates 33
3.7 Conclusions 36
3.8 Python Scripts 37

3.8.1 GBM Analysis 37
3.8.2 DAX Analysis 40
3.8.3 BSM Implied Volatilities 41
3.8.4 EURO STOXX 50 Implied Volatilities 43
3.8.5 Euribor Analysis 45

PART TWO
Theoretical Valuation

CHAPTER 4
Risk-Neutral Valuation 49

4.1 Introduction 49
4.2 Discrete-Time Uncertainty 50
4.3 Discrete Market Model 54

4.3.1 Primitives 54
4.3.2 Basic Definitions 55

4.4 Central Results in Discrete Time 57
4.5 Continuous-Time Case 61
4.6 Conclusions 66
4.7 Proofs 66

4.7.1 Proof of Lemma 1 66
4.7.2 Proof of Proposition 1 67
4.7.3 Proof of Theorem 1 68

CHAPTER 5
Complete Market Models 71

5.1 Introduction 71
5.2 Black-Scholes-Merton Model 72

5.2.1 Market Model 72
5.2.2 The Fundamental PDE 72
5.2.3 European Options 74

5.3 Greeks in the BSM Model 76
5.4 Cox-Ross-Rubinstein Model 81
5.5 Conclustions 84
5.6 Proofs and Python Scripts 84

5.6.1 Itô’s Lemma 84



Contents vii

5.6.2 Script for BSM Option Valuation 85
5.6.3 Script for BSM Call Greeks 88
5.6.4 Script for CRR Option Valuation 92

CHAPTER 6
Fourier-Based Option Pricing 95

6.1 Introduction 95
6.2 The Pricing Problem 96
6.3 Fourier Transforms 97
6.4 Fourier-Based Option Pricing 98

6.4.1 Lewis (2001) Approach 98
6.4.2 Carr-Madan (1999) Approach 101

6.5 Numerical Evaluation 103
6.5.1 Fourier Series 103
6.5.2 Fast Fourier Transform 105

6.6 Applications 107
6.6.1 Black-Scholes-Merton (1973) Model 107
6.6.2 Merton (1976) Model 108
6.6.3 Discrete Market Model 110

6.7 Conclusions 114
6.8 Python Scripts 114

6.8.1 BSM Call Valuation via Fourier Approach 114
6.8.2 Fourier Series 119
6.8.3 Roots of Unity 120
6.8.4 Convolution 121
6.8.5 Module with Parameters 122
6.8.6 Call Value by Convolution 123
6.8.7 Option Pricing by Convolution 123
6.8.8 Option Pricing by DFT 124
6.8.9 Speed Test of DFT 125

CHAPTER 7
Valuation of American Options by Simulation 127

7.1 Introduction 127
7.2 Financial Model 128
7.3 American Option Valuation 128

7.3.1 Problem Formulations 128
7.3.2 Valuation Algorithms 130

7.4 Numerical Results 132
7.4.1 American Put Option 132
7.4.2 American Short Condor Spread 135

7.5 Conclusions 136
7.6 Python Scripts 137

7.6.1 Binomial Valuation 137
7.6.2 Monte Carlo Valuation with LSM 139
7.6.3 Primal and Dual LSM Algorithms 140



viii CONTENTS

PART THREE
Market-Based Valuation

CHAPTER 8
A First Example of Market-Based Valuation 147

8.1 Introduction 147
8.2 Market Model 147
8.3 Valuation 148
8.4 Calibration 149
8.5 Simulation 149
8.6 Conclusions 155
8.7 Python Scripts 155

8.7.1 Valuation by Numerical Integration 155
8.7.2 Valuation by FFT 157
8.7.3 Calibration to Three Maturities 160
8.7.4 Calibration to Short Maturity 163
8.7.5 Valuation by MCS 165

CHAPTER 9
General Model Framework 169

9.1 Introduction 169
9.2 The Framework 169
9.3 Features of the Framework 170
9.4 Zero-Coupon Bond Valuation 172
9.5 European Option Valuation 173

9.5.1 PDE Approach 173
9.5.2 Transform Methods 175
9.5.3 Monte Carlo Simulation 176

9.6 Conclusions 177
9.7 Proofs and Python Scripts 177
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CHAPTER 1
A Quick Tour

1.1 MARKET-BASED VALUATION

This book is about the market-based valuation of (stock) index options. In the domain of
derivatives analytics this is an important task which every major investment bank and buy-side
decision maker in the financial market is concerned with on a daily basis. While theoretical
valuation approaches develop a model, parametrize it and then derive values for options, the
market-based approach works the other way round. Prices from liquidly traded options are
taken as given (i.e. they are inputs instead of outputs) and one tries to parametrize a market
model in a way that replicates the observed option prices as well as possible. This activity is
generally referred to as model calibration. Being equipped with a calibrated model, one then
proceeds with the task at hand, be it valuation, trading, investing, hedging or risk management.
A bit more specifically, one might be interested in pricing and hedging an exotic derivative
instrument with such a model—hoping that the results are in line with the overall market
(i.e. arbitrage-free and even “fair”) due to the previous calibration to more simple, vanilla
instruments.

To accomplish a market-based valuation, four areas have to be covered:

1. market: knowledge about market realities is a conditio sine qua non for any sincere
attempt to develop market-consistent models and to accomplish market-based valuation

2. theory: every valuation must be grounded on a sound market model, ensuring, for exam-
ple, the absence of arbitrage opportunities and providing means to derive option values
from observed quantities

3. numerics: one cannot hope to work with analytical results only; numerical techniques,
like Monte Carlo simulation, are generally required in different steps of a market-based
valuation process

4. technology: to implement numerical techniques efficiently, one is dependent on appro-
priate technology (hard- and software)

This book covers all of these areas in an integrated manner. It uses equity index options
as the prime example for derivative instruments throughout. This, among others, allows to
abstract from dividend related issues.

1



2 DERIVATIVES ANALYTICS WITH PYTHON

1.2 STRUCTURE OF THE BOOK

The book is divided into three parts. The first part is concerned with market-based valuation
as a process and empirical findings about market realities. The second part covers a number
of topics for the theoretical valuation of options and derivatives. It also develops tools much
needed during a market-based valuation. The third part finally covers the major aspects related
to a market-based valuation and also hedging strategies in such a context.

Part I “The Market” comprises two chapters:

� Chapter 2: this chapter contains a discussion of topics related to market-based valuation,
like risks affecting the value of equity index options

� Chapter 3: this chapter documents empirical and anecdotal facts about stocks, stock
indices and in particular volatility (e.g. stochasticity, clustering, smiles) as well as about
interest rates

Part II “Theoretical Valuation” comprises four chapters:

� Chapter 4: this chapter covers arbitrage pricing theory and risk-neutral valuation in
discrete time (in some detail) and continuous time (on a higher level) according to the
Harrison-Kreps-Pliska paradigm (cf. Harrison and Kreps (1979) and Harrison and Pliska
(1981))

� Chapter 5: the topic of this chapter is the complete market models of Black-Scholes-
Merton (BSM, cf. Black and Scholes (1973), Merton (1973)) and Cox-Ross-Rubinstein
(CRR, cf. Cox et al. (1979)) that are generally considered benchmarks for option valuation

� Chapter 6: Fourier-based approaches allow us to derive semi-analytical valuation formu-
las for European options in market models more complex and realistic than the BSM/CRR
models; this chapter introduces the two popular methods of Carr-Madan (cf. Carr and
Madan (1999)) and Lewis (cf. Lewis (2001))

� Chapter 7: the valuation of American options is more involved than with European
options; this chapter analyzes the respective problem and introduces algorithms for Amer-
ican option valution via binomial trees and Monte Carlo simulation; at the center stands the
Least-Squares Monte Carlo algorithm of Longstaff-Schwartz (cf. Longstaff and Schwartz
(2001))

Finally, Part III “Market-Based Valuation” has seven chapters:

� Chapter 8: before going into details, this chapter illustrates the whole process of a market-
based valuation effort in the simple, but nevertheless still useful, setting of Merton’s
jump-diffusion model (cf. Merton (1976))

� Chapter 9: this chapter introduces the general market model used henceforth, which
is from Bakshi-Cao-Chen (cf. Bakshi et al. (1997)) and which accounts for stochastic
volatility, jumps and stochastic short rates

� Chapter 10: Monte Carlo simulation is generally the method of choice for the valuation
of exotic/complex index options and derivatives; this chapter therefore discusses in some
detail the discretization and simulation of the stochastic volatility model by Heston
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(cf. Heston (1993)) with constant as well as stochastic short rates according to Cox-
Ingersoll-Ross (cf. Cox et al. (1985))

� Chapter 11: model calibration stays at the center of market-based valuation; the chapter
considers several general aspects associated with this topic and then proceeds with the
numerical calibration of the general market model to real market data

� Chapter 12: this chapter combines the results from the previous two to value European
and American index options via Monte Carlo simulation in the calibrated general market
model

� Chapter 13: this chapter analyzes dynamic delta hedging strategies for American options
by Monte Carlo simulation in different settings, from a simple one to the calibrated market
model

� Chapter 14: this brief chapter provides a concise summary of central aspects related to
the market-based valuation of index options

In addition, the book has an Appendix with one chapter:

� Appendix A: the appendix introduces some of the most important Python concepts and
libraries in a nutshell; the selection of topics is clearly influenced by the requirements of
the rest of the book; those not familiar with Python or looking for details should consult
the more comprehensive treatment of all relevant topics by the same author (cf. Hilpisch
(2014))

1.3 WHY PYTHON?

Although Python has established itself in the financial industry as a powerful programming
language with an elaborate ecosystem of tools and libraries, it is still not often used for
financial, derivatives or risk analytics purposes. Languages like C++, C, C#, VBA or Java and
toolboxes like Matlab or domain-specific languages like R often dominate this area. However,
we see a number of good reasons to choose Python even for computationally demanding
analytics tasks; the following are the most important ones we want to mention, in no particular
order, (see also chapter 1 in Hilpisch (2014)):

� open source: Python and the majority of available libraries are completely open source;
this allows an entry to this technology at no cost, something particularly important for
students, academics or other individuals

� syntax: Python programming is easy to learn, the code is quite compact and in general
highly readable; at universities it is increasingly used as an introduction to programming
in general; when it comes to numerical or financial algorithm implementation, the syntax
is pretty close to the mathematics in general (e.g. due to code vectorization approaches)

� multi-paradigm: Python is as good for procedural programming (which suffices for the
purposes of this book) as well as at object-oriented programming (which is necessary in
more complex/professional contexts); it also has some functional programming features
to offer

� interpreted: Python is an interpreted language which makes rapid prototyping and devel-
opment in general a bit more convenient, especially for beginners; tools like IPython
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Notebook and libraries like pandas for time series analysis allow for efficient and produc-
tive interactive analytics workflows

� libraries: nowadays, there is a wealth of powerful libraries available and the supply grows
steadily; there is hardly a problem that cannot be easily tackled with an existing library,
be it a numerical problem, a graphical one or a data-related problem

� speed: a common prejudice with regard to interpreted languages—compared to compiled
ones like C++ or C—is the slow speed of code execution; however, financial applications
are more or less all about matrix and array manipulations and operations which can be
done at the speed of C code with the essential Python library NumPy for array-based
computing; other performance libraries, like Numba for dynamic code compiling, can
also be used to improve performance

� market: in the London area (mainly financial services) the number of Python developer
contract offerings was 485 in the third quarter of 2012; the comparable figure in the same
period 2013 was already 864;1 large financial institutions like Bank of America, Merrill
Lynch and J.P. Morgan have millions of lines of Python code in production, mainly in
risk management; Python is also really popular in the hedge fund industry

All in all, Python seems to be a good choice for our purposes. The cover story “Python
Takes a Bite” in the March 2010 issue of Wilmott magazine (cf. Lee (2010)) also illustrates
that Python is gaining ground in the financial world. A modern introduction into Python for
finance is given by Hilpisch (2014).

One of the easiest ways to get started with Python is to register on the Quant Platform
which allows for browser-based, interactive and collaborative financial analytics and devel-
opment (cf. http://quant-platform.com). This platform offers all you need to do efficient and
productive financial analytics as well as financial application building with Python. It also pro-
vides, for instance, integration with R, the free software environment for statistical computing
and graphics.

1.4 FURTHER READING

The book covers a great variety of aspects which comes at the cost of depth of exposition and
analysis in some places. Our aim is to emphasize the red line and to guide the reader easily
through the different topics. However, this inevitably leads to uncovered aspects, omitted
proofs and unanswered questions. Fortunately, a number of good sources in book form are
available which may be consulted on the different topics:

� market: cf. Bittmann (2009) to learn about options fundamentals, the main microstructure
elements of their markets and the specific lingo; Gatheral (2006) is a concise reference
about option and volatility modeling in practice; Rebonato (2004) is a book that com-
prehensively covers option markets, their empirical specialities and the models used in
theory and practice

1Source: www.itjobswatch.co.uk/contracts/london/python.do on 07. October 2014.

http://quant-platform.com
http://quant-platform.com
www.itjobswatch.co.uk/contracts/london/python.do
www.itjobswatch.co.uk/contracts/london/python.do
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� theory: Pliska (1997) is a comprehensive source for discrete market models; the book
by Delbaen and Schachermayer (2004) covers the general arbitrage theory in continuous
time and is quite advanced; less advanced, but still comprehensive, treatments of arbitrage
pricing are Björk (2004) for continuous processes based on Brownian motion and Cont
and Tankov (2004a) for continuous processes with jumps; Wilmott et al. (1995) offers a
detailed discussion of the seminal Black-Scholes-Merton model

� numerics: Cherubini et al. (2009) is a book-length treatment of the Fourier-based option
pricing approach; Glasserman (2004) is the standard textbook on Monte Carlo simulation
in financial applications; Brandimarte (2006) covers a wide range of numerical techniques
regularly applied in mathematical finance and offers implementation examples in Matlab2

� implementation: probably the best introduction to Python for the purposes of this book
is another book by same author (cf. Hilpisch (2014)) which is called Python for Finance;
that book covers the main tools and libraries needed for this book, like IPython, NumPy,
matplotlib, PyTables and pandas, in a detailed fashion and with a wealth of concrete
financial examples; the excellent book by McKinney (2012) about data analysis with
Python should also be consulted; good general introductions to Python from a scientific
perspective are Haenel et al. (2013) and Langtangen (2009); Fletcher and Gardener
(2009) provides an introduction to the language also from a financial perspective, but
mainly from the angle of modeling, capturing and processing financial trades; London
(2005) is a larger book that covers a great variety of financial models and topics and shows
how to implement them in C++; in addition, there is a wealth of Python documentation
available for free on the Internet.

This concludes the Quick Tour.

2Python in combination with NumPy comes quite close to the syntax of Matlab such that translations
are generally straightforward.
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The Market





CHAPTER 2
What is Market-Based Valuation?

2.1 OPTIONS AND THEIR VALUE

An equity option represents the right to buy (call) or sell (put) a unit of the underlying stock
at a prespecified price (strike) at a predetermined date (European option) or over a determined
period of time (American option). Some options are settled in actual stocks; most options, like
those on an index, are settled in cash. People or institutions selling options are called option
writers. Those buying options are called option holders.

For a European call option on an index with strike 8,000 and index level of 8,200
at maturity, the option holder receives the difference 8,200 − 8,000 = 200 (e.g. in EUR or
USD) from the option writer. If the index level is below the strike, say at 7,800, the option
expires worthless and the writer does not have to pay anything. We can formalize this via
the so-called inner value (or intrinsic value or payoff)—from the holder’s viewpoint—of
the option

hT (S, K) = max[ST − K, 0]

where T is the maturity date of the option, ST the index level at this date and K represents the
strike price. We can now use Python for the first time and plot this inner value function.

A script could look like:

#

# European Call Option Inner Value Plot

# 02_MBV/inner_value_plot.py

#

# (c) Dr. Yves J. Hilpisch

# Derivatives Analytics with Python

#

import numpy as np

import matplotlib as mpl

import matplotlib.pyplot as plt

mpl.rcParams['font.family'] = 'serif'

9
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# Option Strike

K = 8000

# Graphical Output

S = np.linspace(7000, 9000, 100) # index level values

h = np.maximum(S - K, 0) # inner values of call option

plt.figure()

plt.plot(S, h, lw=2.5) # plot inner values at maturity

plt.xlabel('index level $S_t$ at maturity')

plt.ylabel('inner value of European call option')

plt.grid(True)

The output of this script is shown in Figure 2.1.
Three scenarios have to be distinguished with regard to the so-called moneyness of an

option:

� in-the-money (ITM): a call (put) is in-the-money if S > K (S < K)
� at-the-money (ATM): an option, call or put, is at-the-money if S ≈ K
� out-of-the-money (OTM): a call (put) is out-of-the-money if S < K (S > K)

However, what influences the present value of such a call option today? Here are some
factors:

F IGURE 2.1 Inner value of a European call option on a stock index with strike
of 8,000 dependent on the index level at maturity
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� initial index level: of course, it is important what the current index level is since this
influences how probable it is that the index level exceeds the strike at maturity; if the
index level is 7,900 it should be much more probable that the call option expires with
positive value than if the level was at 7,500

� volatility of the index: put simply, (annualized) volatility is a measure for the randomness
of the index’s returns over a year; suppose the extreme case that the index is at 7,900
and there is no risk/no movement at all—then the index would not surpass the strike at
maturity; however, if the index is at 7,900 and fluctuating strongly then there is a chance
that the option will expire with positive value—and the bigger the fluctuations (the higher
the volatility) the better from the option holder’s viewpoint

� time-to-maturity: again suppose the index is at 7,900; if time-to-maturity is only one
day then the probability of the option being valuable at maturity is much lower than if
time-to-maturity was 1 month or even 1 year

� interest rate: cash flows from a European option occur at maturity only which represents
a future date; these cash flows have to be discounted to today to derive a present value

These heuristic insights are formalized in the seminal work of Black-Scholes-Merton (cf.
Black and Scholes (1973) and Merton (1973)) who for the first time derived a closed option
pricing formula for a parsimonious set of input parameters. Their formula says mainly the
following

C∗
0 = CBSM(S0, K, T , r, 𝜎)

In words, the fair present value of a European call option C∗
0 is given by their formula CBSM(⋅)

which takes as input parameters:

1. S0 the current index level
2. K the strike price of the option
3. T the maturity date (equals time-to-maturity viewed from the present date)
4. r the constant risk-less short rate
5. 𝜎 the volatility of the index, i.e. the standard deviation of the index level returns

The Black-Scholes-Merton formula can also be plotted and the result is shown in Fig-
ure 2.2.1 The present value of the option is always above the (undiscounted) inner value. The
difference between the two is generally referred to as the time value of the option. In this sense,
the option’s present value is composed of the inner value plus the time value. Time value is
suggestive of the fact that the option still has time to get in-the-money or to get even more
in-the-money.

Here is the Python script that generates Figure 2.2.

1Cf. Chapter 5 for a treatment of the Black-Scholes-Merton model and their pricing formula, reproduced
there as equation (5.7). The Python script in sub-section 5.6.2, which we have used to generate Figure
2.2, implements the formula for calls and puts.
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F IGURE 2.2 Black-Scholes-Merton value of a European call option on a
stock index with K = 9000, T = 1.0, r = 0.025 and 𝜎 = 0.2 dependent on the
initial index level S0; for comparison, the undiscounted inner value is also shown

#

# European Call Option Value Plot

# 02_mbv/BSM_value_plot.py

#

# (c) Dr. Yves J. Hilpisch

# Derivatives Analytics with Python

#

import numpy as np

import matplotlib as mpl

import matplotlib.pyplot as plt

mpl.rcParams['font.family'] = 'serif'

# Import Valuation Function from Chapter 5

import sys

sys.path.append('05_com')

from BSM_option_valuation import BSM_call_value

# Model and Option Parameters

K = 8000 # strike price

T = 1.0 # time-to-maturity

r = 0.025 # constant, risk-less short rate

vol = 0.2 # constant volatility

# Sample Data Generation

S = np.linspace(4000, 12000, 150) # vector of index level values
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h = np.maximum(S - K, 0) # inner value of option

C = [BSM_call_value(S0, K, 0, T, r, vol) for S0 in S]

# calculate call option values

# Graphical Output

plt.figure()

plt.plot(S, h, 'b-.', lw=2.5, label='inner value')

# plot inner value at maturity

plt.plot(S, C, 'r', lw=2.5, label='present value')

# plot option present value

plt.grid(True)

plt.legend(loc=0)

plt.xlabel('index level $S_0$')

plt.ylabel('present value $C(t=0)$')

2.2 VANILLA VS. EXOTIC INSTRUMENTS

Financial markets distinguish between plain vanilla or flow equity derivatives, like European
call options written on an equity index, and exotic equity derivatives, like options on an equity
index with Asian features, barriers and/or American exercise.2 In general, there exist liquid
markets for plain vanilla products but not for exotic ones. In contrast, exotic derivatives are
often tailored by financial institutions to specific client needs and are not traded at all (or “only
once” if you like).3

Nevertheless, financial institutions writing exotic equity options (so-called sell side) or
clients buying these options (i.e. the buy side) must have a mechanism to derive fair values
regularly and transparently. In addition, option writers must be able to hedge their exposure. In
relation to exotic equity derivatives, sellers and buyers must often resort to numerical methods,
like Monte Carlo simulation, to come up with fair values and appropriate hedging strategies.

Here we face for the first time what is meant by market in market-based valuation.
The market is represented by liquidly traded vanilla instruments (for example, European or
American call options) on the underlying in question. If I want to value a non-traded equity
derivative in a market-based manner then I should include in this process the information
available from the relevant vanilla options market. This requirement is based on a belief in
efficient markets and the claim that the market is always right.

More formally, whatever model I use for the valuation and hedging of exotic equity
derivatives, a minimum requirement is that the model reproduce the values of liquidly traded
instruments sufficiently well. Two areas have to be considered carefully:

� qualitative features: given the underlying of the derivative to be valued and the options
on this underlying liquidly traded, what qualitative features should the model exhibit? for

2Cf. de Weert (2008) for an overview and explanation of exotic options and their features.
3As a proxy of market liquidity you can think of the frequency with which option quotes are updated. For
plain vanilla instruments this might be in the range of seconds during trading hours; for exotic derivatives
this might be once a day or even once a week.
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example, it would make sense to assume that an equity index will (positively) trend in the
long term; however, this assumption is not appropriate if the underlying is an interest rate
or volatility measure which tend to fluctuate around long-term equilibrium values

� quantitative features: given the basic qualitative features of the model, there are in
general infinitely many possibilities to parametrize it; while in physics there are often
universal constants to rely on, this is hardly ever the case in finance; on the positive side,
this allows parameters to be set in a way that best fits model prices to market-observed
prices from vanilla instruments (a task called calibration and central in what follows)

In Chapter 3, we discuss a number of issues related to the question of what qualitative
features an appropriate model should exhibit. Part II of the book then explains how to build
such models theoretically. Part III of the book is mainly concerned with simulation, model
calibration (i.e. parameter specification), valuation and hedging.

2.3 RISKS AFFECTING EQUITY DERIVATIVES

This section focuses on market risks affecting the price of derivative instruments as well as
other risks that play a role in this context.

2.3.1 Market Risks

To come up with fair values for equity derivatives and sound hedging strategies, one has to
consider first which market risks influence their values. Among the market risks that influence
equity derivatives are:

� price risk: this relates to uncertain changes in the underlying’s price, like index or stock
price movements

� volatility risk: volatility refers to the standard deviation of the underlying’s returns;
however, volatility itself fluctuates over time, i.e. volatility is not constant but rather
stochastic

� jump or crash risk: the stock market crashes of 1987, 1998, 2001 and 2008 as well as
implied volatilities of stock index options (see the next chapter) indicate that there is a
significantly positive probability for large market drops; such discontinuities may break
down, for example, otherwise sound dynamic hedging strategies

� interest rate risk: although equity derivatives generally do not rely on interest rates
or bonds directly4 their value is indirectly influenced by interest rates via risk-neutral
discounting with the short rate

� correlation risk: simply spoken, correlation measures the co-movement of two or more
assets/quantities; correlation may change over time and become close to 1, i.e. perfect,
among asset classes during times of stress

� liquidity risk: dynamic and static hedging strategies depend on market liquidity; for
example, if certain options are not liquidly traded a desired hedge may not be executable

4Otherwise they would be classified as hybrids.
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� default risk: in case of the default of a company represented in the underlying assets,
stocks and/or bonds of this company depreciate in value (often to zero)

In what follows, the discussion addresses all market risks mentioned above, apart from
default and liquidity risk. Default risk does not play a significant role since the discussion
mainly focuses on benchmark indices where the possibility of default of a single company is
generally negligible.5

Liquidity risk is more oriented towards the implementation of hedging programs and in that
sense “only” an important operational aspect depending on the specific market environment
an option seller or buyer operates in. In addition, the focus of this book is mainly on stock
index derivatives where liquidity risk seldom is a problem—index futures, for example, are
among the most liquid instruments. Although an active area of research,6 a broadly accepted
theoretical approach to incorporate liquidity in financial models is still missing. Cetin et al.
(2004) point out:

“From a financial engineering perspective, the need is paramount for a simple yet
robust method that incorporates liquidity risk into arbitrage pricing theory.”

They propose what they call the “liquidity risk arbitrage pricing theory” with a stochastic
supply curve for a security’s price as a function of trade size.7 As long as there is no solution
to this, one has to keep in mind what The New York Times summarizes as follows:

“That failure [of risk models] suggests new frontiers for financial engineering and
risk management, including trying to model the mechanics of panic and the patterns
of human behavior.

‘What wasn’t recognized was the importance of a different species of risk—
liquidity risk,’ said Stephen Figlewski, a professor of finance at the Leonard N. Stern
School of Business at New York University.…”8

2.3.2 Other Risks

In addition to market risks, there are other sources of risk like, for instance, models and
operations. Model risk refers to the risk that valuation and risk management finally rely on the
specific model used. Even if your model addresses, say, volatility risk you may nevertheless
address it in a harmful way—i.e. via the wrong model generating inappropriate hedging strate-
gies. Operational risk refers to all aspects of implementing valuation and risk management
processes as well as risks related to IT systems used. For example, knowledge of the right

5Gatheral (2006), ch. 6, analyzes default risk in the context of options on single stocks. Duffie and
Singleton (2003) analyze default risk in a broader context and more comprehensively.
6Frey (2000) analyzes market illiquidity as a source of model risk in the context of dynamic hedging.
Hilpisch (2001) provides a survey of research addressing valuation and dynamic hedging in imperfectly
liquid markets.
7Cf. Jarrow (2005) for a discussion of this theory’s implications in terms of valuation, hedging and risk
measurement.
8The New York Times (13. September 2009): “Wall Street’s Math Wizards Forgot a Few Variables.”
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hedging program is surely of great importance—but the timely and correct execution of the
program is at least equally important.

2.4 HEDGING

Hedging describes the activity of minimizing or even eliminating risks resulting from option
positions. Getting back to our previous example, an option writer who faces the risk of paying
out 200 EUR to an option holder might want to set up a hedge program that pays her the exact
amount in the exact case—leaving her with net debt of zero. The program should also pay
300 EUR or 100 EUR or whatever might be the amount due to writing the index option. In
such a way, the writer would completely eliminate the risks attached to the short position in
the option. In general, option writers do exactly this since as market participants they are not
speculators but rather want to earn a steady income from their activities.

A hedge program can be either dynamic or static or a combination of both. Assume
the equity index option of the example has time-to-maturity of 1 year. In order to hedge the
option dynamically—in general with positions in the underlying—the writer sets up a hedge
portfolio at the date of writing the option and then adjusts the portfolio frequently. A static
hedge program—in general with positions in other options—would be set up at issuance
and hold constant until maturity. More sophisticated hedge strategies generally combine both
elements.

In general, there is neither a unique objective nor a unique set of principles for setting up
hedge programs. For example, Gilbert et al. (2007) report three main objectives of variable
annuities providers, i.e. life insurers, when implementing hedging programs:

1. accounting level
2. accounting volatility and
3. economic risks

This book focuses on economic risks only since accounting issues are highly dependent
on the concrete reporting standards and may therefore vary from country to country. In that
sense, the perspective of this book is cash flow driven and intentionally neglects accounting
issues. The approach is that of arbitrage or risk-neutral pricing/hedging as comprehensively
explained in Björk (2004) for models with continuous price processes and in Cont and Tankov
(2004a) for models where price processes may jump.

Generally speaking, the main goal of a hedging program in economic or cash terms is
to perfectly replicate the hedged derivative’s payoff and thus eliminate all risk. However, in
practice this is seldom realized due to two main issues. The first is the frequency of hedge
rebalancings. In theory, dynamic hedging requires continuous rebalancings but practice only
allows discrete rebalancings due to transaction costs and other market microstructure elements.
This leads to a sequence of hedge errors which might add up over time or which may cancel
each other out to some extent. The second is market incompleteness. If jumps of the underlying
are possible, for example, markets become incomplete in the sense that risks cannot be hedged
away since an infinite number of hedge instruments would be necessary to do so. One must
rather resort to a risk minimization program where an (expected) hedge error, for example, is
minimized. Another possibility would be to super-replicate the derivative—a strategy that can
be rather costly.
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In summary, if markets are sufficiently complete, hedgers generally strive to completely
eliminate all cash flow risks resulting from options. If they are incomplete, hedgers can often
only try to minimize the (expected) hedge error.

2.5 MARKET-BASED VALUATION AS A PROCESS

This book mainly takes the perspective of a corporate or financial institution investing or
trading in—possibly exotic—equity derivatives. A canonical example might be a quantitative
hedge fund. In order to make profound decisions and to build a sustainable business around
equity derivatives, the institution must consider the following fundamental aspects:

1. market realities: what characterizes the market of the underlying and of the liquidly
traded options on the underlying?

2. market model: the institution should apply a theoretical market model which is capable
of providing a realistic framework for valuation and hedging purposes in the specific
underlying and option market

3. vanilla instrument valuation: there should be available efficient methods to price vanilla
instruments on a large scale

4. model calibration: a minimum requirement the market model must fulfill is that it
reproduce prices of actively traded vanilla instruments reasonably well; to this end, the
model parameters have to be calibrated to market data

5. exotic instrument valuation: there must be available flexible numerical methods to value
exotic derivatives based on the calibrated market model; the most flexible method in this
regard is Monte Carlo simulation (MCS)

6. hedging: as a general rule, if you can value a derivative instrument you can derive infor-
mation needed to hedge this instrument; regarding exotic equity derivatives, numerical
methods also have to be applied more often than not to come up with hedge parameters,
like the delta of an option

This book addresses all six aspects. However, it abstracts in general from market
microstructure aspects like bid/ask spreads, market liquidity, transaction costs, trade exe-
cution, etc. and also from dividends (which may be justified by the focus on index options).

Being equipped with an understanding of what characterizes the market-based valuation
process, the next chapter reproduces some of the most important stylized facts with regard to
stock indices and index options.





CHAPTER 3
Market Stylized Facts

3.1 INTRODUCTION

In science one often takes the route from the specific to the general—from a number of
real world observations to a theory or model describing the phenomenon in general fashion.
This chapter therefore mainly conducts an analysis of real world data as a basis for the further
modeling and implementation efforts. Our main objects of analysis are the DAX stock index—
composed of stocks of large German companies—and European call options on the EURO
STOXX 50 stock index—composed of stocks of large European companies.

The chapter first introduces some notions central to equity markets and equity derivatives,
like volatility and correlation. It then conducts a simulation study in a laboratory fashion
based on the benchmark geometric Brownian motion model of Black-Scholes-Merton (BSM).
However, the main part of the chapter is concerned with the analysis of a financial time series
of daily DAX index level movements. This is done in a tutorial style where the simplicity and
replicability of results (with the provided Python scripts) are the main objectives. The chapter
then turns to equity options markets in section 3.5. Here, pricing conventions and practices,
the volatility smile/skew and its term structure are the main topics. Section 3.6 then rather
briefly takes a look at market realities with regard to short rates.

3.2 VOLATIL ITY, CORRELATION AND CO.

Volatility may be the most central notion in option and derivatives analytics. There is not a
single volatility concept but rather a family of concepts related to the notion of an “undirected
dispersion/risk measure”. For our purposes, we need to distinguish between the following
different—but somehow related—volatility concepts (always in relation to a stochastic process
or a financial time series):

� historical volatility: this refers to the standard deviation of log returns of a financial time
series; suppose we observe N (past) log returns1 rn, n ∈ {1,… , N}, with mean return

�̂� = 1
N

N∑

n=1

rn

1Assume a time series with quotes Sn, n ∈ {0,… , N}. The log return for n > 0 is defined by rn ≡

log Sn − log Sn−1 = log(Sn∕Sn−1).
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the historical volatility �̂� is then given by2

�̂� =

√
√
√
√ 1

N − 1

N∑

n=1

(rn − �̂�)2

� instantaneous volatility: this refers to the volatility factor of a diffusion process; for
example, in the Black-Scholes-Merton model the instantaneous volatility 𝜎 is found in
the respective (risk-neutral) stochastic differential equation (SDE)

dSt = rStdt + 𝜎StdZt

� implied volatility: this is the volatility that, if put into the Black-Scholes-Merton option
pricing formula, gives the market-observed price of an option; suppose we observe today
a price of C∗

0 for a European call option; the implied volatility 𝜎
imp is the quantity that

solves ceteris paribus the implicit equation3

C∗
0 = CBSM(S0, K, T , r, 𝜎imp)

These volatilities all have squared counterparts which are then named variance. For
example, in some financial models where volatility is stochastic—in contrast to the BSM
assumption—the variance is modeled instead of the volatility.

Two other (sample) moments of distribution are of importance:

� skewness: this is a measure of the location of sample values relative to the mean (“more
to the left or more to the right”)4; again suppose we observe N (past) log returns rn, n ∈
{1,… , N}, with mean return �̂�; the (sample) skewness ŝ is

ŝ =
1
N

∑N
n=1(rn − �̂�)3

(
1
N

∑N
n=1(rn − �̂�)2

)3∕2

� kurtosis: this is a measure for the peakedness of a distribution and/or the size of the tails
of the distribution (“fat tails” are implied by a high kurtosis); again suppose we observe
N (past) log returns rn, n ∈ {1,… , N}, with mean return �̂�; the (sample) kurtosis k̂ is

k̂ =
1
N

∑N
n=1(rn − �̂�)4

(
1
N

∑N
n=1(rn − �̂�)2

)2
− 3

here 3 is subtracted such that the (standard) normal distribution has a kurtosis of 0

2This formula is often called the corrected (or unbiased) sample standard deviation in contrast to the
case of the uncorrected (or biased) sample standard deviation where the multiplier is 1∕N instead of
1∕(N − 1). Note that in Python and in particular NumPy, the uncorrected sample standard deviation is
generally implemented.
3Implied volatility could in principle also be defined with respect to a different model. However, through-
out this book implied always means “implied by the Black-Scholes-Merton formula”.
4For the normal distribution the skewness is 0, implying a symmetric distribution around the mean.
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Another important statistical notion is correlation. We mainly need to distinguish two
types5:

� historical correlation: this refers to a measure for the co-movement of two financial
time series; suppose we observe from two series a and b a total of N (past) pairs of log
returns (ra

n, rb
n), n ∈ {1,… , N}, with mean returns �̂�

a and �̂�
b; the historical (or sample)

correlation �̂� is then defined as

�̂� =
∑N

n=1

(
ra

n − �̂�
a
) (

rb
n − �̂�

b
)

√
∑N

n=1

(
ra

n − �̂�
a
)2 ∑N

n=1

(
rb

n − �̂�
b
)2

� instantaneous correlation: suppose we are given two standard Brownian motions Za, Zb;
the instantaneous correlation 𝜌 between both is then given by ⟨Za, Zb⟩t = 𝜌t where ⟨⋅⟩t
denotes the quadratic variation process (cf. Protter (2005), pp. 66–77); one can also write
dZadZb = 𝜌dt where the meaning of “instantaneous” becomes more evident

Equipped with this set of definitions we can now proceed and apply (some of) them to
both artificial data and real data.

3.3 NORMAL RETURNS AS THE BENCHMARK CASE

As the benchmark case, we consider the geometric Brownian motion model of BSM given by
the SDE

dSt = rStdt + 𝜎StdZt

A discrete version, which can easily be simulated, is given by the difference equation

St = St−Δte

(

r− 1
2
𝜎

2
)

Δt+𝜎
√
Δtzt

for times t ∈ {Δt, 2Δt,… , T} and the zt being standard normally distributed random variables.
We parametrize the model with S0 = 100, T = 10.0, r = 0.05, 𝜎 = 0.2. The Python script

in sub-section 3.8.1 contains these parameters and a simulation algorithm as well as imple-
menting a number of test routines. In addition, it generates a variety of graphical plots.6

Figure 3.1 presents a simulated path for the index level in combination with the daily log
returns. From first inspection, the index development seems realistic and indistinguishable from
typical charts seen in the financial press. Figure 3.2 shows the frequency of daily log returns
and compares these to a normal distribution. The fit seems quite good—a fact to be expected
since the characteristic feature of geometric Brownian motion is normally distributed returns.

Similary, Figure 3.3 illustrates the normality of the returns by a so-called quantile-quantile
plot or Q-Q plot. All return realizations lie on the straight line in such a case.

5Cf. Rebonato (2004) for an in-depth discussion of correlation in the context of option pricing.
6The script assumes 252 business days per year for the artificial data.
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F IGURE 3.1 A single simulated path for the geometric Brownian motion over a 10-year period with
daily log returns

F IGURE 3.2 Histogram of the daily log returns (bars) and for comparison the probability density
function of the normal distribution with the sample mean and volatility (line)
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FIGURE 3.3 Quantile-quantile plot of the daily log returns of the geometric
Brownian motion

However, statistical tests may help in gaining further confirmation of the graphical evi-
dence. To this end, the Python script calculates several sample statistics and conducts a total
of three tests. For the particular process shown in Figure 3.1, the statistics are:

1 RETURN SAMPLE STATISTICS

2 ---------------------------------------------

3 Mean of Daily Log Returns 0.000078

4 Std of Daily Log Returns 0.012746

5 Mean of Annua. Log Returns 0.019689

6 Std of Annua. Log Returns 0.202336

7 ---------------------------------------------

8 Skew of Sample Log Returns -0.024305

9 Skew Normal Test p-value 0.617420

10 ---------------------------------------------

11 Kurt of Sample Log Returns 0.127744

12 Kurt Normal Test p-value 0.190342

13 ---------------------------------------------

14 Normal Test p-value 0.374472

15 ---------------------------------------------

16 Realized Volatility 0.202340

17 Realized Variance 0.040941

Some comments on the results:

1. volatility: the annualized standard deviation of the log returns equals almost exactly the
instantaneous volatility 𝜎 = 0.2 of the geometric Brownian motion
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F IGURE 3.4 Realized volatility for the simulated path of the geometric Brownian motion

2. skewness: the skewness is almost zero and the high p-value of the normal skewness test
indicates that the distribution of the log returns is normal

3. kurtosis: although the kurtosis is slightly positive, the p-value of the normal kurtosis test
nevertheless also indicates normal distribution

4. normality: finally, the joint test for normality indicates a normal distribution with a
p-value of 0.426

All in all, we can conclude that the simulated index level path exhibits, as desired, normally
distributed log returns. The sample annualized volatility also coincides with the instantaneous
volatility of the BSM model.

What about realized volatility and variance? To begin with, realized volatility is a special
form of historical volatility and can be seen as a process. While historical volatility is computed
for a fixed time window or a fixed number of observations, realized volatility evolves over
time. Assume we started in January 2004 with say five observations and compute the sample
volatility for the first time. Now, one day later when the 6th observation is available we update
the volatility value to include the 6th observation as well. In this fashion, realized volatility is
constantly updated.7

Figure 3.4 illustrates the evolution of realized volatility over time. It obviously converges
to the above reported value of 0.202 which is almost the same as the instantaneous volatility.

Finally, Figure 3.5 shows the rolling mean return and the rolling (realized) volatility for
time windows of 252 days, i.e. 1 year. In addition, the figure also displays the rolling correlation
between the two over a time window of same length. Even though the realized volatility and the
sample volatility for all returns coincide with the constant instantaneous volatility, the rolling

7Cf. Andersen and Benzoni (2009) for a survey of realized volatility and related research.
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FIGURE 3.5 Rolling mean log return (252 days), rolling volatility (252 days) and rolling correlation
between both (252 days) for geometric Brownian motion; dashed lines are averages over the whole
period shown

volatility varies strongly around the level of 20%. The volatility and return measures are
sometimes positively correlated (move in the same direction) and sometimes negatively—on
average the correlation is �̂� = −0.0529.

3.4 INDICES AND STOCKS

Before turning to options, this section reproduces stylized facts of stock indices and stocks.

3.4.1 Sty l i zed Facts

In this sub-section, we briefly list and describe some stylized facts about stock index returns.
Stylized facts can be described as follows (cf. Cont (2001), p. 223):

“A set of [statistical] properties, common across many instruments, markets and time
periods, has been observed by independent studies and classified as ‘stylized facts’.”

Below we list a selection of stylized facts. The emphasis is on comparing these facts
with the benchmark case of BSM where volatility is constant and returns are normally
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distributed. Among those stylized facts about index returns that are important for our
purposes are8:

� stochastic volatility: volatility is neither constant nor deterministic; there is no mechanism
to forecast volatility at a high confidence level

� volatility clustering: empirical data suggests that high volatility events seem to cluster
in time; there is often a positive autocorrelation of volatility measures

� volatility mean reversion: volatility is a mean-reverting quantity—it never reaches zero
nor does it go to infinity; however, the mean can change over time

� leverage effect: studies suggest that volatility is negatively correlated with asset returns;
if return measures increase, volatility measures often decrease and vice versa

� fat tails: compared to a normal distribution large positive and negative index returns are
more frequent

� jumps: index levels may move by magnitudes that cannot be explained within a Gaussian,
i.e. normal, diffusion setting; some jump component may be necessary to explain certain
large moves

3.4.2 DAX Index Returns

We will now test whether we can identify evidence for the stylized facts of the previous sub-
section in the log returns of the DAX index. We analyze the period from 01. October 2004 to
30. September 2014.9 The following is a small selection of the raw data used. All results and
graphics reported hereafter are based on the adjusted close numbers from Yahoo! Finance.

1 index returns rea_var rea_vol

2 Date

3 2014-09-24 9661.97 0.006952 0.047792 0.218614

4 2014-09-25 9510.01 -0.015853 0.047798 0.218628

5 2014-09-26 9490.55 -0.002048 0.047780 0.218586

6 2014-09-29 9422.91 -0.007153 0.047766 0.218555

7 2014-09-30 9474.30 0.005439 0.047751 0.218519

Figure 3.6 shows the index levels and the daily log returns graphically. On first inspection,
the development of the index is not too different from the picture for the geometric Brownian
motion. However, the daily log returns speak quite a different language: the (average) ampli-
tudes change over time indicating at least time-varying volatility and there also seems to be
volatility clustering.

Figure 3.7 compares the sample frequency of log returns with a normal distribution that
has the same mean and standard deviation. The sample distribution has both a higher peak

8Cf. Cont (2001) for a concise survey. Cf. Rebonato (2004), in particular chapter 7, for a wealth of
information regarding empirical findings about equity markets and equity options.
9Source of DAX index quotes http://finance.yahoo.com. We use the data as delivered by the site, no
adjustments have been made.

http://finance.yahoo.com
http://finance.yahoo.com
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FIGURE 3.6 DAX index level quotes and daily log returns over the period from 01. October 2004 to
30. September 2014

F IGURE 3.7 Histogram of the daily log returns of the DAX over the period from 01. October 2004 to
30. September 2014 (bars) and for comparison the probability density function of the normal
distribution with the sample mean and volatility (line)
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F IGURE 3.8 Quantile-quantile plot of the daily log returns of the DAX over
the period from 01. October 2004 to 30. September 2014

and heavier tails. However, skewness seems comparable—there is neither “left-leaning” nor
“right-leaning” of the sample distribution.

Finally, Figure 3.8 shows the Q-Q plot for the DAX log returns. This also illustrates well
the deviation from the normal distribution.

We can also test our findings more rigorously, at least with respect to the obviously
non-normal distribution. Here is the output of the Python script of sub-section 3.8.2:

1 RETURN SAMPLE STATISTICS

2 ---------------------------------------------

3 Mean of Daily Log Returns 0.000348

4 Std of Daily Log Returns 0.013761

5 Mean of Annua. Log Returns 0.087656

6 Std of Annua. Log Returns 0.218449

7 ---------------------------------------------

8 Skew of Sample Log Returns 0.025083

9 Skew Normal Test p-value 0.603591

10 ---------------------------------------------

11 Kurt of Sample Log Returns 7.205877

12 Kurt Normal Test p-value 0.000000

13 ---------------------------------------------

14 Normal Test p-value 0.000000

15 ---------------------------------------------

16 Realized Volatility 0.218519

17 Realized Variance 0.047751

18
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FIGURE 3.9 Realized volatility for the DAX over the period from 01. October 2004 to 30.
September 2014

Over the sample period, the DAX index generates an annualized return of about 8.7%.
The historical/realized volatility is about 21.9%. All test results say that the null hypothesis
that “the sample distribution is normal” can be rejected with high significance. The impression
about the kurtosis is also supported by the high value of 7.2—we have fat tails.

What about realized volatility over time? Figure 3.9 illustrates that the realized volatility
varies over time and that it does not seem to converge (at least not strongly). In the beginning,
it goes down to below 15%, rises again to about 24% to drop and rise again for a bit. This
provides further evidence that volatility is time varying.

The last point is even better illustrated in Figure 3.10 which shows a rolling yearly
volatility measure. This measure varies between 11% and about 40%. These large deviations
are much stronger than the deviations observed in Figure 3.5 for the geometric Brownian
motion. This holds true for both deviations from the average and with respect to the difference
between maxima and minima. Nevertheless, volatility obviously is mean reverting.

What about the leverage effect? Comparison of the upper and middle sub-plots of Fig-
ure 3.10 indeed indicates a negative correlation. This is supported by the negative average
(line) in the lower sub-plot. However, the yearly rolling correlation measure in the lower
sub-plot varies strongly taking almost extreme values in regular cycles. Regularly, correlation
even comes quite close to +1.0 or −1.0.

So far, we have found evidence for time-varying/stochastic volatility, clustering, mean
reversion, leverage effect and fat tails. What about jumps? If we say, somehow arbitrarily, that
a jump is a daily log return of more than±5%, we have a total of 31 jumps in the historical DAX
data. Assuming a normal distribution with the DAX log returns’ sample mean and standard
deviation, the probabilities are P(rn < −0.05) = 0.0002911 and P(rn > −0.05) = 0.0003402
for observing such extraordinary returns given a specific return observation rn. Multiplying
these probabilities with the sample size of 2,557 we could expect 0.74 returns lower than −5%
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F IGURE 3.10 Rolling mean log return (252 days), rolling volatility (252 days) and rolling
correlation between both (252 days); dashed lines are averages over the whole period shown

and 0.87 returns higher than +5%. Again, we see evidence for fat tails and can interpret these
figures also as hints towards the existence of jumps.10

All in all, if we want to model an index like the DAX realistically, the model should take
account of:

1. autocorrelated stochastic volatility
2. mean reversion of volatility
3. leverage effect, i.e. negative correlation between returns and volatility
4. fat tails of and jumps in the index returns

3.5 OPTION MARKETS

This section now turns to options markets, in particular to bid/ask spreads in these markets
and implied volatilities.

10These considerations are quite heuristic in nature and are lacking a sound conceptual grounding.
For example, a central question is how to assess the distinct contributions of the jump and diffusion
component, respectively, to observed index movements in a jump-diffusion model. Cf. Klössner (2010)
for a survey of econometric tests for jumps in financial time series.
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3.5.1 Bid/Ask Spreads

A market-based valuation of equity derivatives, both vanilla and exotic, should yield suffi-
ciently accurate values. However, markets are far from being perfect and a number of so-called
market microstructure elements influences prices directly or indirectly. With regard to valua-
tion accuracy it is important that there is in general not a single quote for an option but at least
two: a bid quote at which market makers would buy the option and an ask quote at which they
would sell the option.

Table 3.1 reports average option quote spreads for call options on stocks in the Dow
Jones Industrial Average (DJIA) index for the period from 1996 to 2010. For the total sample
of about 1.1 mn options, the average spread is 0.227 USD or 7.92% relative to the average
mid-price. These values vary with maturity of the call options and moneyness levels. The
smallest absolute spread with 0.136 USD is observed for out-of-the-money options with short
maturity. The smallest relative spread emerges with 3.7% for in-the-money options with long
maturity. Table 3.2 paints a consistent picture for put option quotes and spreads.

To put these observations differently, one cannot in general expect to reach a market-based
valuation accuracy of say “1 cent or better” or “1% or better”. The market itself does not quote
options in such a manner and exchanges generally have tick sizes—i.e. minimum allowed
changes of the price of an option—much higher than 1 cent. For example, in Tables 3.1 and
3.2 the tick size for options with bid quotes below 3 USD is 5 cents. For options with bid
quotes above 3 USD the tick size is 10 cents.

3.5.2 Impl ied Volat i l i ty Surface

Recall that the implied volatility of a European call option with market quote C∗
0 is the value

𝜎
imp that solves the implicit equation

C∗
0 = CBSM(S0, K, T , r, 𝜎imp) (3.1)

given the BSM call option formula. Chapter 5 discusses the model, the formula and the
sensitivity of the formula with respect to the input volatility (the so-called vega) in detail. At

TABLE 3.1 Option bid/ask spreads for call options on stocks of the DJIA indexa

Category Type Number Maturity Mid-Price Spread Rel. Spread

All All 1,095,327 96.60 5.185 0.227 7.92%
Short OTM 125,575 44.26 1.069 0.136 18.72%
Short ATM 118,027 44.74 2.956 0.184 7.44%
Short ITM 173,607 44.30 6.561 0.265 4.74%
Long OTM 191,127 127.57 1.593 0.147 12.63%
Long ATM 203,790 129.63 4.563 0.226 5.72%
Long ITM 283,201 128.81 9.967 0.318 3.70%

aData for the period 1996–2010; OTM, ATM, ITM = out-of-the, at-the, in-the-money options; number =
number of call options included in the sample; maturity = average option maturity in days; mid-
price = middle of bid and ask quotes in USD; spread = USD difference of bid and ask quote; relative
spread = spread relative to mid-price.
Source: Chaudhury (2014).
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TABLE 3.2 Option bid/ask spreads for put options on stocks of the DJIA indexa

Category Type Number Maturity Mid-Price Spread Rel. Spread

All All 1,105,028 96.07 5.093 0.229 7.80%
Short OTM 158,486 44.55 1.339 0.148 15.98%
Short ATM 120,257 44.63 3.443 0.204 7.12%
Short ITM 146,979 43.86 6.858 0.279 4.91%
Long OTM 267,847 128.80 2.238 0.172 10.26%
Long ATM 201,100 129.33 5.769 0.255 5.18%
Long ITM 210,359 127.34 10.621 0.317 3.50%

aData for the period 1996–2010; OTM, ATM, ITM = out-of-the, at-the, in-the-money options; number =
number of put options included in the sample; maturity = average option maturity in days; mid-
price = middle of bid and ask quotes in USD; spread = USD difference of bid and ask quote; relative
spread = spread relative to mid-price.
Source: Chaudhury (2014).

this stage, it is only important to know, that the vega, i.e. the first derivative of the formula with
respect to volatility, is strictly positive implying a bijective relationship between call values
and volatilities and therewith a unique solution to equation (3.1). Sub-section 3.8.3 provides
a Python script implementing the BSM formula for calls and a numerical routine to solve the
implicit equation (3.1).

Equipped with this knowledge, we now want to briefly analyze a real volatility surface.
Volatility surface means the volatilities implied for different option strikes and different option
maturities on the same underlying. Our objects of study will be implied volatilities from
European call options on the EURO STOXX 50 stock index.

As with index returns, there are some stylized facts about the volatility surface for stock
indices (cf. Rebonato (2004), chapter 7):

� smiles: option implied volatilities exhibit a smile form, i.e. for calls the OTM implied
volatilities are higher than the ATM ones; sometimes they rise again for ITM options; this
is a phenomenon present in the financial markets mainly since the market crash of 1987

� term structure: smiles are more pronounced for short-term options than for longer-term
options; a phenomenon sometimes called volatility term structure

The script in sub-section 3.8.4 uses a set of option quotes for different strikes and different
option maturities. Options are European call options on the EURO STOXX 50 index and the
quotes are from 30. September 2014. The following is a small excerpt from the data used.

1 Date Strike Call Maturity Put

2 498 2014-09-30 3750 27.4 2015-09-18 635.9

3 499 2014-09-30 3800 21.8 2015-09-18 680.3

4 500 2014-09-30 3850 17.2 2015-09-18 725.7

5 501 2014-09-30 3900 13.4 2015-09-18 772.0

6 502 2014-09-30 3950 10.4 2015-09-18 818.9

The script calculates the implied volatilities of the different options and generates a
graphical output as shown in Figure 3.11. The results reflect the stylized facts rather well.
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FIGURE 3.11 Implied volatilities from European call options on the EURO STOXX 50 on 30.
September 2014

3.6 SHORT RATES

Short rates and associated discount factors are not only important for the valuation of options.
Short rates are, in a sense, the least common denominator of all asset pricing models—be it for
primary asset classes (e.g. stocks, bonds, commodities) or derivative assets, be it in complete
or incomplete market models (cf. Hansen and Renault (2009)). As intensively discussed in
Chapter 4, short rates and their corresponding discount factors are a basic building block for
the risk-neutral valuation approach and the Fundamental Theorem of Asset Pricing.

However, empirical evidence about the dynamics of short rates is not as clear as one would
wish. A recent empirical study by Bali-Wu opens with the words (cf. Bali and Wu (2006),
pp. 1269–1270):

“The short-term interest rate is a fundamental variable in both theoretical and empir-
ical finance because of its central role in asset pricing. An enormous amount of work
has been directed towards the understanding of the stochastic behavior of short-term
interest rates. Nevertheless, based on different data sets and/or different parametric or
non-parametric specifications, these studies have generated confusing and sometimes
conflicting conclusions.”

Nevertheless, some stylized facts are also worth reporting with respect to short rates.11

Those that are most important in terms of financial modeling requirements are:

� positivity: (nominal) interest rates are positive in general; a formal model should take
this into account

11Cf. Björk (2009) for a concise survey of interest rate types and modeling. Cf. Brigo and Mercurio
(2006) for a comprehensive treatment of current interest rate modeling.
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F IGURE 3.12 Daily quotes of 1 week Euribor and daily log changes over the period from 01.
January 1999 to 30. September 2014

� stochasticity: interest rates in general and short rates in particular move in random fashion;
there are no means to forecast interest rates movements with high confidence

� mean reversion: interest rates can neither trend to zero nor infinity in the long term such
that there must always be the phenomenon of mean reversion

� term structure: yields of benchmark bonds—like German bunds—as well as rates in
interbank lending vary with time to maturity implying different (instantaneous) forward
rates, i.e. different future short rate levels

The Euribor, which stands for “Euro InterBank Offered Rate”, is a benchmark rate for
interbank lending. There are Euribor rates for different maturities, starting with 1 week and
ranging to 1 year. Figure 3.12 shows the daily quotes of the 1 week Euribor from January 1999
to the end of September 2014 as well as the daily log changes. With regard to the daily changes
there are a number of outliers and we can also observe something like volatility clustering.
The figure also provides support for the first three stylized facts. This figure has been produced
with the Python script found in sub-section 3.8.5. This script uses an Excel workbook which
contains the whole Euribor dataset from 1999 to September 2014.12 Figure 3.13 shows the
histogram of the daily log changes in comparison to a normal distribution with same mean
and standard deviation. The histogram has a relatively high peak.

Figure 3.14 illustrates the deviation of the daily log change distribution from normality
by a Q-Q plot.

Figure 3.15 shows the daily quotes of the Euribor for 1 week, 1 month, 6 months and 1 year
in comparison. The general picture is one with a normal term structure (longer horizons show

12Source: http://www.euribor-ebf.eu/euribor-org/euribor-rates.html.

http://www.euribor-ebf.eu/euribor-org/euribor-rates.html
http://www.euribor-ebf.eu/euribor-org/euribor-rates.html
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FIGURE 3.13 Histogram of daily log changes in 1 week Euribor in comparison to a normal
distribution with same mean and standard deviation (line)

F IGURE 3.14 Quantile-quantile plot of the daily log changes in the 1 week Euribor
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F IGURE 3.15 Daily quotes of 1 week (dotted), 1 month (dot-dashed), 6 months (dashed) and 1 year
Euribor (solid line) over the period from 01. January 1999 to 30. September 2014

higher rates) but there are also periods with inverted term structure where short-term borrowing
becomes more expensive than long-term borrowing. The financial crisis of 2008/2009 caused
a large drop in the overall level of Euribor rates accompanied by a widening of the spreads
(steeper term structure).

3.7 CONCLUSIONS

A realistic market model …

� … has to take into account that index volatility
– varies over time (stochasticity, mean reversion, clustering)
– is negatively correlated with returns (leverage effect)
– varies for different option strikes (volatility smile)
– varies for different option maturities (volatility term structure)

� … has to account for jumps in the index development
� … has to take into account that interest rates

– vary over time (positivity, stochasticity, mean reversion)
– vary for different time horizons (term structure)

Such a model therefore comprises (at least)

� a stochastic volatility component
� a jump component and
� a stochastic short rate component



Market Stylized Facts 37

3.8 PYTHON SCRIPTS

3.8.1 GBM Analysis

#

# Analyzing Returns from Geometric Brownian Motion

# 03_stf/GBM_returns.py

#

# (c) Dr. Yves J. Hilpisch

# Derivatives Analytics with Python

#

import math

import numpy as np

import pandas as pd

import scipy.stats as scs

import statsmodels.api as sm

import matplotlib as mpl

import matplotlib.pyplot as plt

mpl.rcParams['font.family'] = 'serif'

#

# Helper Function

#

def dN(x, mu, sigma):

''' Probability density function of a normal random variable x.

Parameters

==========
mu: float

expected value

sigma: float

standard deviation

Returns

=======
pdf: float

value of probability density function

'''

z = (x - mu) / sigma

pdf = np.exp(-0.5 * z ** 2) / math.sqrt(2 * math.pi * sigma ** 2)

return pdf

#

# Simulate a Number of Years of Daily Stock Quotes

#
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def simulate_gbm():

# model parameters

S0 = 100.0 # initial index level

T = 10.0 # time horizon

r = 0.05 # risk-less short rate

vol = 0.2 # instantaneous volatility

# simulation parameters

np.random.seed(250000)

gbm_dates = pd.DatetimeIndex(start='30-09-2004',
end='30-09-2014',
freq='B')

M = len(gbm_dates) # time steps

I = 1 # index level paths

dt = 1 / 252. # fixed for simplicity

df = math.exp(-r * dt) # discount factor

# stock price paths

rand = np.random.standard_normal((M, I)) # random numbers

S = np.zeros_like(rand) # stock matrix

S[0] = S0 # initial values

for t in range(1, M): # stock price paths

S[t] = S[t - 1] * np.exp((r - vol ** 2 / 2) * dt

+ vol * rand[t] * math.sqrt(dt))

gbm = pd.DataFrame(S[:, 0], index=gbm_dates, columns=['index'])
gbm['returns'] = np.log(gbm['index'] / gbm['index'].shift(1))

# Realized Volatility (eg. as defined for variance swaps)

gbm['rea_var'] = 252 * np.cumsum(gbm['returns'] ** 2) / np.arange(len(gbm))

gbm['rea_vol'] = np.sqrt(gbm['rea_var'])

gbm = gbm.dropna()

return gbm

# Return Sample Statistics and Normality Tests

def print_statistics(data):

print "RETURN SAMPLE STATISTICS"

print "---------------------------------------------"

print "Mean of Daily Log Returns %9.6f" % np.mean(data['returns'])

print "Std of Daily Log Returns %9.6f" % np.std(data['returns'])

print "Mean of Annua. Log Returns %9.6f" % (np.mean(data['returns']) * 252)

print "Std of Annua. Log Returns %9.6f" % \
(np.std(data['returns']) * math.sqrt(252))

print "---------------------------------------------"

print "Skew of Sample Log Returns %9.6f" % scs.skew(data['returns'])

print "Skew Normal Test p-value %9.6f" % scs.skewtest(data['returns'])[1]

print "---------------------------------------------"
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print "Kurt of Sample Log Returns %9.6f" % scs.kurtosis(data['returns'])

print "Kurt Normal Test p-value %9.6f" % \
scs.kurtosistest(data['returns'])[1]

print "---------------------------------------------"

print "Normal Test p-value %9.6f" % \
scs.normaltest(data['returns'])[1]

print "---------------------------------------------"

print "Realized Volatility %9.6f" % data['rea_vol'].iloc[-1]

print "Realized Variance %9.6f" % data['rea_var'].iloc[-1]

#

# Graphical Output

#

# daily quotes and log returns

def quotes_returns(data):

''' Plots quotes and returns. '''

plt.figure(figsize=(9, 6))

plt.subplot(211)

data['index'].plot()

plt.ylabel('daily quotes')

plt.grid(True)

plt.axis('tight')

plt.subplot(212)

data['returns'].plot()

plt.ylabel('daily log returns')

plt.grid(True)

plt.axis('tight')

# histogram of annualized daily log returns

def return_histogram(data):

''' Plots a histogram of the returns. '''

plt.figure(figsize=(9, 5))

x = np.linspace(min(data['returns']), max(data['returns']), 100)

plt.hist(np.array(data['returns']), bins=50, normed=True)
y = dN(x, np.mean(data['returns']), np.std(data['returns']))

plt.plot(x, y, linewidth=2)
plt.xlabel('log returns')

plt.ylabel('frequency/probability')

plt.grid(True)

# Q-Q plot of annualized daily log returns

def return_qqplot(data):

''' Generates a Q-Q plot of the returns.'''

plt.figure(figsize=(9, 5))

sm.qqplot(data['returns'], line='s')
plt.grid(True)

plt.xlabel('theoretical quantiles')

plt.ylabel('sample quantiles')
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# realized volatility

def realized_volatility(data):

''' Plots the realized volatility. '''

plt.figure(figsize=(9, 5))

data['rea_vol'].plot()

plt.ylabel('realized volatility')

plt.grid(True)

# mean return, volatility and correlation (252 days moving = 1 year)

def rolling_statistics(data):

''' Calculates and plots rolling statistics (mean, std, correlation). '''

plt.figure(figsize=(11, 8))

plt.subplot(311)

mr = pd.rolling_mean(data['returns'], 252) * 252

mr.plot()

plt.grid(True)

plt.ylabel('returns (252d)')

plt.axhline(mr.mean(), color='r', ls='dashed', lw=1.5)

plt.subplot(312)

vo = pd.rolling_std(data['returns'], 252) * math.sqrt(252)

vo.plot()

plt.grid(True)

plt.ylabel('volatility (252d)')

plt.axhline(vo.mean(), color='r', ls='dashed', lw=1.5)
vx = plt.axis()

plt.subplot(313)

co = pd.rolling_corr(mr, vo, 252)

co.plot()

plt.grid(True)

plt.ylabel('correlation (252d)')

cx = plt.axis()

plt.axis([vx[0], vx[1], cx[2], cx[3]])

plt.axhline(co.mean(), color='r', ls='dashed', lw=1.5)

3.8.2 DAX Analys is

#

# Analyzing DAX Index Quotes and Returns

# Source: http://finance.yahoo.com

# 03_stf/DAX_returns.py

#

# (c) Dr. Yves J. Hilpisch

# Derivatives Analytics with Python

#

http://finance.yahoo.com
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import pandas.io.data as web

from GBM_returns import *

# Read Data for DAX from the Web

def read_dax_data():

''' Reads historical DAX data from Yahoo! Finance, calculates log returns,

realized variance and volatility.'''

DAX = web.DataReader('ˆGDAXI', data_source='yahoo',
start='30-09-2004', end='30-09-2014')

DAX.rename(columns={'Adj Close' : 'index'}, inplace=True)
DAX['returns'] = np.log(DAX['index'] / DAX['index'].shift(1))

DAX['rea_var'] = 252 * np.cumsum(DAX['returns'] ** 2) / np.arange(len(DAX))

DAX['rea_vol'] = np.sqrt(DAX['rea_var'])

DAX = DAX.dropna()

return DAX

def count_jumps(data, value):

''' Counts the number of return jumps as defined in size by value. '''

jumps = np.sum(np.abs(data['returns']) > value)

return jumps

3.8.3 BSM Impl ied Volat i l i t ies

#

# Valuation of European Call Options in BSM Model

# and Numerical Derivation of Implied Volatility

# 03_stf/BSM_imp_vol.py

#

# (c) Dr. Yves J. Hilpisch

# from Hilpisch, Yves (2014): Python for Finance, O'Reilly.

#

from math import log, sqrt, exp

from scipy import stats

from scipy.optimize import fsolve

class call_option(object):

''' Class for European call options in BSM Model.

Attributes

==========
S0: float

initial stock/index level

K: float

strike price

t: datetime/Timestamp object

pricing date
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M: datetime/Timestamp object

maturity date

r: float

constant risk-free short rate

sigma: float

volatility factor in diffusion term

Methods

=======
value: float

return present value of call option

vega: float

return vega of call option

imp_vol: float

return implied volatility given option quote

'''

def __init__(self, S0, K, t, M, r, sigma):

self.S0 = float(S0)

self.K = K

self.t = t

self.M = M

self.r = r

self.sigma = sigma

def update_ttm(self):

''' Updates time-to-maturity self.T. '''

if self.t > self.M:

raise ValueError("Pricing date later than maturity.")

self.T = (self.M - self.t).days / 365.

def d1(self):

''' Helper function. '''

d1 = ((log(self.S0 / self.K)

+ (self.r + 0.5 * self.sigma ** 2) * self.T)

/ (self.sigma * sqrt(self.T)))

return d1

def value(self):

''' Return option value. '''

self.update_ttm()

d1 = self.d1()

d2 = ((log(self.S0 / self.K)

+ (self.r - 0.5 * self.sigma ** 2) * self.T)

/ (self.sigma * sqrt(self.T)))

value = (self.S0 * stats.norm.cdf(d1, 0.0, 1.0)

- self.K * exp(-self.r * self.T) * stats.norm.cdf(d2, 0.0, 1.0))

return value
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def vega(self):

''' Return Vega of option. '''

self.update_ttm()

d1 = self.d1()

vega = self.S0 * stats.norm.pdf(d1, 0.0, 1.0) * sqrt(self.T)

return vega

def imp_vol(self, C0, sigma_est=0.2):
''' Return implied volatility given option price. '''

option = call_option(self.S0, self.K, self.t, self.M,

self.r, sigma_est)

option.update_ttm()

def difference(sigma):

option.sigma = sigma

return option.value() - C0

iv = fsolve(difference, sigma_est)[0]

return iv

3.8.4 EURO STOXX 50 Impl ied Volat i l i t ies

#

# Black-Scholes-Merton Implied Volatilities of

# Call Options on the EURO STOXX 50

# Option Quotes from 30. September 2014

# Source: www.eurexchange.com, www.stoxx.com

# 03_stf/ES50_imp_vol.py

#

# (c) Dr. Yves J. Hilpisch

# Derivatives Analytics with Python

#

import numpy as np

import pandas as pd

from BSM_imp_vol import call_option

import matplotlib as mpl

import matplotlib.pyplot as plt

mpl.rcParams['font.family'] = 'serif'

# Pricing Data

pdate = pd.Timestamp('30-09-2014')

#

# EURO STOXX 50 index data

#

# URL of data file

es_url = 'http://www.stoxx.com/download/historical_values/hbrbcpe.txt'

# column names to be used

http://www.eurexchange.com
http://www.stoxx.com
http://www.stoxx.com/download/historical_values/hbrbcpe.txt
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cols = ['Date', 'SX5P', 'SX5E', 'SXXP', 'SXXE',

'SXXF', 'SXXA', 'DK5F', 'DKXF', 'DEL']

# reading the data with pandas

es = pd.read_csv(es_url, # filename

header=None, # ignore column names

index_col=0, # index column (dates)

parse_dates=True, # parse these dates

dayfirst=True, # format of dates

skiprows=4, # ignore these rows

sep=';', # data separator

names=cols) # use these column names

# deleting the helper column

del es['DEL']

S0 = es['SX5E']['30-09-2014']

r = -0.05

#

# Option Data

#

data = pd.HDFStore('./03_stf/es50_option_data.h5', 'r')['data']

#

# BSM Implied Volatilities

#

def calculate_imp_vols(data):

''' Calculate all implied volatilities for the European call options

given the tolerance level for moneyness of the option.'''

data['Imp_Vol'] = 0.0

tol = 0.30 # tolerance for moneyness

for row in data.index:

t = data['Date'][row]

T = data['Maturity'][row]

ttm = (T - t).days / 365.

forward = np.exp(r * ttm) * S0

if (abs(data['Strike'][row] - forward) / forward) < tol:

call = call_option(S0, data['Strike'][row], t, T, r, 0.2)

data['Imp_Vol'][row] = call.imp_vol(data['Call'][row])

return data

#

# Graphical Output

#

markers = ['.', 'o', 'ˆ', 'v', 'x', 'D', 'd', '>', '<']

def plot_imp_vols(data):

''' Plot the implied volatilites. '''

maturities = sorted(set(data['Maturity']))

plt.figure(figsize=(10, 5))
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for i, mat in enumerate(maturities):

dat = data[(data['Maturity'] == mat) & (data['Imp_Vol'] > 0)]

plt.plot(dat['Strike'].values, dat['Imp_Vol'].values,

'b%s' % markers[i], label=str(mat)[:10])
plt.grid()

plt.legend()

plt.xlabel('strike')

plt.ylabel('implied volatility')

3.8.5 Euribor Analys is

#

# Analyzing Euribor Interest Rate Data

# Source: http://www.emmi-benchmarks.eu/euribor-org/euribor-rates.html

# 03_stf/EURIBOR_analysis.py

#

# (c) Dr. Yves J. Hilpisch

# Derivatives Analytics with Python

#

import pandas as pd

from GBM_returns import *

# Read Data for Euribor from Excel file

def read_euribor_data():

''' Reads historical Euribor data from Excel file, calculates log returns,

realized variance and volatility.'''

EBO = pd.read_excel('./03_stf/EURIBOR_current.xlsx',

index_col=0, parse_dates=True)
EBO['returns'] = np.log(EBO['1w'] / EBO['1w'].shift(1))

EBO = EBO.dropna()

return EBO

# Plot the Term Structure

markers = [',', '-.', '–', '-']

def plot_term_structure(data):

''' Plot the term structure of Euribor rates. '''

plt.figure(figsize=(10, 5))

for i, mat in enumerate(['1w', '1m', '6m', '12m']):

plt.plot(data[mat].index, data[mat].values,

'b%s' % markers[i], label=mat)
plt.grid()

plt.legend()

plt.xlabel('strike')

plt.ylabel('implied volatility')

plt.ylim(0.0, plt.ylim()[1])

http://www.emmi-benchmarks.eu/euribor-org/euribor-rates.html
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CHAPTER 4
Risk-Neutral Valuation

4.1 INTRODUCTION

Every sincere attempt to value financial derivatives needs to be grounded on a sound theory,
formally represented in general by some kind of market model. A market model embodies
a simplifying mathematical description of a real financial market. A priori, it is not clear
what features a market model should have. These are mainly dictated by the market under
observation and the tasks to be accomplished (e.g. pricing, trading, hedging, risk management).
However, there is a minimum set of requirements a market model should obey. The most
important are the absence of arbitrage opportunities (NA) and no free lunches with vanishing
risk (NFLVR).

A central result in mathematical finance is the Fundamental Theorem of Asset Pricing
which relates, for a given market model, the conditions of NA or NFLVR to the existence of
an equivalent martingale measure (EMM) making all discounted stochastic processes of the
market model martingales. A martingale is a stochastic process that does not change its value
on average (under some suitable conditions). An important corollary of this result is that the
(discounted) price processes of attainable, i.e. redundant, options are also martingales giving
rise to a pure probabilistic approach to option pricing. Namely, the value of a European option
maturing at some date in the future is simply its expected payoff at that date under the EMM
discounted back to today by the risk-free short rate.

The market-based valuation of options is a mainly numerical discipline and therefore
works generally in discrete time and with discrete state spaces. This is due to computers being
able only to store discrete sets of quantities. However, in the valuation process analytical
results from continuous time, continuous state space models are used whenever appropriate.
Unfortunately, the mathematical machinery needed to establish the Fundamental Theorem for
such types of models is well beyond the scope of this book.

We therefore take a typical—and for our purposes appropriate—route by introducing
the main building blocks of the theory in discrete time and with discrete state space. The
mathematics needed remains on an undergraduate level. Nevertheless, all the fundamental
notions and results of arbitrage pricing and risk-neutral valuation can be presented in an
almost self-contained fashion. The intuitive grasp gained in this discrete model world should
then carry over to the continuous world with its numerous complications. In this setting, the
central results are only stated and references are given for the respective proofs.

49
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There is a large literature on the concepts and results presented in this chapter. Cf. Bhat-
tacharya and Waymire (2007) or Williams (1991) for the fundamental probabilistic concepts.
Cf. Protter (2005) for a comprehensive treatment of stochastic processes and stochastic inte-
gration needed for the continuous time, continuous state space context. The seminal paper
by Harrison and Pliska (1981) is still a highly readable source, in particular for the discrete
case. The book by Pliska (1997) coveres comprehensively arbitrage theory in discrete models
while the book by Delbaen and Schachermayer (2004) should be consulted on the general
theory. The article by Protter (2001) provides a concise survey of the general theory.

Sections 4.2 through 4.4 cover the discrete time case. Section 4.5 considers continuous
time models. A number of proofs are provided in section 4.7.

4.2 DISCRETE-TIME UNCERTAINTY

In this section, we develop a mathematical model that can capture the notions of risk
and uncertainty in financial markets.1 We consider an economy over a fixed time interval
[0, T] ⊂ R+. T is called the terminal date where we assume T ∈ N, the set of natural numbers.
At date 0 there is uncertainty about the true state of the economy at the terminal date T . The
set of possible states, however, is known. The set of all possible states 𝜔 is denoted Ω and
called the state space. Subsets of Ω are called events. The family of sets that forms the set of
observable events is an algebra in Ω.

Definition 1 (Algebra). A family  of sets is an algebra in Ω if:

1. Ω ∈ 

2. E ∈  ⇒ Ec ∈ 

3. E1, E2,… , EI ∈  ⇒
⋃I

i=1 Ei ∈ 

Ec denotes the complement of the set E. It is easy to see that the power set ℘(Ω) of Ω, i.e.
the set of all subsets of Ω, is the largest algebra in Ω and that the family {∅,Ω} is the smallest
one. On the set of observable events  , we can define a probability measure. The probability
measure carries information about the probability of observable events to occur.

Definition 2 (Probability Measure). Let  be an algebra in Ω. A function P :  → [0, 1] is
a probability measure if:

1. ∀E ∈  : P(E) ≥ 0

2. P
(⋃I

i=1 Ei

)

=
∑I

i=1 P(Ei) for disjoint sets E1, E2,… , EI ∈ 

3. P(Ω) = 1

Two probability measures P and Q, defined on an algebra  , are equivalent if they agree
on the same null-sets, P(E) = 0 ⇔ Q(E) = 0, where E ∈  . A collection (Ω, , P) of a state
space Ω, a set of observable events  , where  is an algebra, and a probability measure P
defined on  is called a probability space.

1The material of this section is standard, cf. Williams (1991).
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In general, securities traded in financial markets are risky bets since their future prices are
uncertain. In our simple setup, a natural way to model securities with uncertain future prices
is via functions of the economy’s state at the terminal date. This motivates the introduction of
random variables and random vectors into the model.

Definition 3 (Random Variable). Given a probability space (Ω, , P), a random variable
S is a function

S : Ω → R+,𝜔 ↦ S(𝜔)

that is  -measurable, i.e., for each E ∈ {[a, b[: a, b ∈ R, a < b} one has

S−1(E) ≡ {𝜔 ∈ Ω : S(𝜔) ∈ E} ∈ 

A function

S : Ω → RK
+ ,𝜔 ↦ S(𝜔)

is a random vector if its component functions

Sk : Ω → R+,𝜔 ↦ Sk(𝜔), k ∈ {1,… , K}

are  -measurable. A random vector S is  -measurable if all component functions Sk are
 -measurable.

It is sometimes convenient to write S∈ for “S is  -measurable’ where S can be either a
random variable or a random vector.

Definition 4 (Expectation). Let a probability space (Ω, , P) be given where Ω is finite.
The expectation EP[S] of a random variable (or vector) S under a probability measure P is
defined as

EP[S] ≡
∑

𝜔∈Ω
P(𝜔) ⋅ S(𝜔)

The expectation of a random variable is real-valued whereas the expectation of a random
vector is again a vector.

With respect to this definition, it is important to recall that we have defined random
variables as taking only positive values on the real line. Otherwise we ought to be more
careful.

So far we have assumed that at date 0 there is uncertainty with regard to the state of the
economy at the terminal date T . It seems more realistic, however, to assume that uncertainty
resolves gradually over time. As before, let Ω be the set of all possible states of the economy
at date T . Assume now that new information about the true state of the economy at date T
arrives at dates t ∈ {0, 1,… , T}. This concept is general enough for us to interpret the time
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interval [t, t + 1[, 0 ≤ t < T , between two consecutive dates as a week, a day, an hour or any
other unit of “real” time.2 We have:

Definition 5 (Filtration). A filtration F is a non-decreasing family of algebras in Ω, i.e.
F ≡ (t)t∈{0,…,T} where 0 ⊆ 1 ⊆ … ⊆ T−1 ⊆ T .

We call the collection (Ω, , F, P) a filtered probability space. In the present context, the
filtration is a model for the resolution of uncertainty over time. If an event E ⊆ Ω is in t, then
it is known at date t whether the event may happen or not. In other words, if E is in t, one can
decide whether the true state 𝜔 is in E or not. Hence, t can be interpreted as the information
set at date t. In general, we assume that 0 = {∅,Ω} and T = ℘(Ω), the power set of Ω.
Economically, this translates into “nothing is known at the beginning of the economy” and
“everything is known at the end of the economy”, respectively. The requirement that the t be
non-decreasing means that information cannot be lost.

In such a dynamic context, one can generalize the idea of a random variable (vector)
straightforwardly to obtain a stochastic (vector) process. This enables one eventually to model
price dynamics of securities.

Definition 6 (Stochastic Process). A stochastic (vector) process (St)t∈{0,…,T} is a date-
ordered sequence of random variables (random vectors) St, t ∈ {0,… , T}.

Suppose that (St)t∈{0,…,T} represents the price process of a security. Since the price of a
security at the terminal date depends on the state of the economy at this date, it is reasonable
to assume that its price at date t depends on the information t available at date t. This gives
rise to the following concept.

Definition 7 (Adaptation). A stochastic (vector) process (St)t∈{0,…,T} is said to be adapted
to a filtration F = (t)t∈{0,…,T} if ∀t : St is t-measurable.

If security price processes are adapted to the filtration then the economy is informationally
efficient. The mathematical formulation here corresponds to weak form efficiency. In financial
models, one can sometimes find the opposite situation as well: information is generated by
security price processes. To handle such situations one needs yet another concept:

Definition 8 (Algebra Generation). The algebra generated by a random variable (or
vector) S is denoted  (S) and is the smallest algebra with respect to which S is measurable.
The algebra generated by a stochastic (vector) process (St)t∈{0,…,T} up to date t is denoted
 (Si : i ∈ {0,… , t}) and is the smallest algebra with respect to which all random variables
(vectors) Si, i ∈ {0,… , t} are measurable.

In light of this definition, a stochastic process (St)t∈{0,…,T} generates the filtration F =
(t)t∈{0,…,T} where t ≡  (Si : i ∈ {0,… , t}). Of course, the stochastic process is adapted to
the filtration it generates. We also need the following definition:

2Cases with varying length of the interval [t, t + 1[ can also be included.
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Definition 9 (Stopping Time). Let (Ω, , F, P) be fixed. A random variable 𝜏 : Ω → [0, T] ⊂
R+ is a t-stopping time if {𝜔 : 𝜏(𝜔) ≤ t} ∈ t for all 0 ≤ t ≤ T.

We now turn to martingales. Heuristically, a martingale embodies the notion of a fair
investment. Consider a risk-neutral investor who plans to invest in a stock.3 This investor
would call the investment fair if the expected discounted price of the stock at some future
date equals its present price. The investor would deny buying the stock if the actual price is
higher. He would, however, always agree to buy if the price of the stock is below the expected
discounted price. A stock price process satisfying the condition that the expected discounted
price at any future date equals its price today is a so-called martingale.

To formally define a martingale, the concept of conditional expectation is needed. Taking
expectations as proposed in the respective definition presumes that nothing is known about
the future state of the economy at the terminal date. In other words, the minimal algebra
{∅,Ω} forms the information set. If uncertainty is gradually resolved, the information set
enlarges over time and allows better expectations to be taken. Here, better means that expec-
tations are taken conditional on a relatively enlarged information set. Formally, one has the
following.

Definition 10 (Conditional Expectation). Let (Ω, , F, P) be given. The conditional expecta-
tion EP

t [S] of a random variable (vector) S given information t is the unique random variable
(vector) that satisfies:

1. EP
t [S] is t-measurable

2. ∀E ∈ t : EP[EP
t [S] ⋅ 1E] = EP[S ⋅ 1E]

For notational simplicity, we denote the conditional expectation by EP
t [⋅] instead of

EP[⋅|t] as often found in the literature. This eventually enables the definition of a
martingale.

Definition 11 (Martingale). Let (Ω, , F, Q) be given. A F-adapted stochastic process
(St)t∈{0,…,T} is a (vector) martingale under the probability measure Q if

∀t, s ≥ 0, t + s ≤ T : EQ
t [St+s] = St

A probability measure Q that makes a stochastic process—defined on some filtered
probability space (Ω, , F, P)—a martingale is called a martingale measure. Whenever Q is
P-equivalent, it is called a P-equivalent martingale measure.

It may become necessary to change from one probability measure to an equivalent prob-
ability measure, say from P to Q. This is where the Radon-Nikodym derivative comes into
play.

3An investor is risk neutral if he/she is indifferent between a sure amount of money and a risky investment
with an expected (discounted) payoff equally as high.



54 DERIVATIVES ANALYTICS WITH PYTHON

Definition 12 Let (Ω, , P) be given where Ω is finite. For a P-equivalent probabil-
ity measure Q, the Radon-Nikodym derivative L, which is actually a random variable, is
defined by

∀𝜔 ∈ Ω : L(𝜔) ≡

{
Q(𝜔)
P(𝜔)

for P(𝜔) ≠ 0

0 for P(𝜔) = 0

We conclude this section with a demonstration of how the Radon-Nikodym derivative
may be applied in computing expectations. Let two equivalent probability measures P and Q,
defined on an algebra  in a finite state space Ω, be given. It holds that EQ[S] = EP[LS] for
a random variable (vector) S defined on (Ω, , P). Easy manipulations of EQ[S] verify this
claim:

EQ[S] =
∑

𝜔∈Ω
Q(𝜔) ⋅ S(𝜔)

=
∑

𝜔∈Ω
P(𝜔) ⋅

Q(𝜔)
P(𝜔)

⋅ S(𝜔)

=
∑

𝜔∈Ω
P(𝜔) ⋅ L(𝜔) ⋅ S(𝜔)

= EP[LS]

4.3 DISCRETE MARKET MODEL

4.3.1 Primit ives

We consider a model of uncertainty as examined in the previous section. The model econ-
omy lasts for a fixed period [0, T], where T ∈ N and T < ∞. A filtered probability space
(Ω,℘(Ω), F, P) is fixed where Ω is the finite state space of which each element 𝜔 ∈ Ω rep-
resents one possible state of the economy at the terminal date T . New information about the
true state of the economy at date T only arrives at dates t ∈ {0, 1,… , T}.4 Economic activity
is also observed at these dates only. At date T all economic activity ends. A time interval
]t, t + 1[ belongs to each date t ≤ T − 1 where there is no economic activity. The filtration
F = (t)t∈{0,…,T} satisfies 0 ≡ {∅,Ω} and T ≡ ℘(Ω). The probability measure P is strictly
positive for all 𝜔 ∈ Ω, i.e. ∀𝜔 ∈ Ω : P(𝜔) > 0. As a consequence, the probability measure P
is uniquely defined up to equivalence.

There is a set S of K + 1 securities available in the marketplace whose price processes are
modeled by the vector process

(St)t∈{0,…,T},∀t : St ∈ RK+1
++

4Typically, models in which information only arrives at certain points in time are referred to as discrete
time models.
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The first security, k = 0, is called bond and its price process is denoted (S0
t )t∈{0,…,T}. The

bond plays a special role since it is assumed to be risk-less and serves as numeraire, so we set
S0

0 ≡ 1.5 Formally, risk-less means that the random variable

S0
t : Ω → R++,𝜔 ↦ S0

t (𝜔)

is t−1-measurable, i.e. ∀t ≥ 1 : S0
t ∈ t−1. In other words, the actual value of S0

t is already
known at date t − 1. The remaining K securities are risky and modeled by a stochastic process
each. The price process of the k-th security, k ≥ 1, is denoted (Sk

t )t∈{0,…,T} and is adapted to the
filtration F. Recall that adapted means that the random variables Sk

t : Ω → R++,𝜔 ↦ Sk
t (𝜔)

are measurable with respect to t, i.e. ∀k, t : Sk
t (𝜔) ∈ t. In other words, the actual value of Sk

t
is not known until date t. Finally, we denote the discount process by (𝛽t)t∈{0,…,T} and define

∀t : 𝛽t ≡
(
S0

t

)−1
.

4.3.2 Basic Def in i t ions

We will now introduce several central expressions that are closely related to securities trading.

Definition 13 (Portfolio). A portfolio 𝜙t is a K + 1-dimensional vector 𝜙t ∈ RK+1.

A portfolio 𝜙t = (𝜙0
t ,… ,𝜙K

t ) gives the number 𝜙k
t of every security k ∈ {0,… , K} held

by an agent at date t. For example, 𝜙0
t represents the number of bonds in the portfolio 𝜙t at

date t. The portfolio 𝜙0 has the natural interpretation of being the initial endowment of an
agent since agents will be allowed to form a new portfolio for the first time when prices S0 are
announced. This portfolio is then labeled 𝜙1, and has to be held during the time interval [0, 1[.

Definition 14 (Value of Portfolio). The market value Vt of a portfolio 𝜙t in S at date t is
given by a function Vt : RK+1 × RK+1

++ → R where

Vt(𝜙, S) ≡

{
𝜙1 ⋅ S0 for t = 0
𝜙t ⋅ St for t ∈ {1,… , T}

Definition 15 (Predictability). 𝜙t is predictable if it is t−1-measurable, i.e. if ∀t ≥ 1 : 𝜙t ∈
t−1.

Predictability implies that the portfolio 𝜙t be formed at t − 1 and kept constant during the
interval [t − 1, t]. At date t, when prices St are announced, the portfolio has a market value of
Vt(𝜙, S) = 𝜙t ⋅ St. This amount can then be used, for instance, to form a new portfolio 𝜙t+1,
which is to be held constant over the interval [t, t + 1], and so forth.

5This assumption comes along with virtually no real loss of generality but it facilitates intuition consid-
erably.
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Definition 16 (Trading Strategy). A trading strategy is a predictable vector process

(𝜙t)t∈{0,…,T}

with component processes (𝜙k
t )t∈{0,…,T}, k ∈ {0,… , K}. (𝜙t)t∈{0,…,T} is predictable if ∀t ≥

1 : 𝜙t is predictable.

Two other processes are directly associated with each trading strategy.

Definition 17 (Value Process, Gains Process). We have the following two important pro-
cesses:

1. The value process (Vt(𝜙, S))t∈{0,…,T} of a trading strategy in S is a real-valued, F-adapted
process where Vt(𝜙, S) is given by definition 14.

2. The gains process (Gt(𝜙, S))t∈{0,…,T} of a trading strategy in S is a real-valued, F-

adapted process where we set G0 ≡ 0 and where Gt : RK+1 × RK+1
++ → R with Gt(𝜙, S) ≡

∑t
i=1 𝜙i ⋅ (Si − Si−1) for t ≥ 1.

In the analysis to follow, two classes of trading strategies are of particular interest: self-
financing and admissible trading strategies.

Definition 18 (Self-Financing Strategy). A trading strategy is self-financing if and only
if ∀t : 1 ≤ t ≤ T − 1 : 𝜙t ⋅ St = 𝜙t+1 ⋅ St or equivalently if and only if ∀t : 1 ≤ t ≤ T − 1 :
Vt(𝜙, S) = V0(𝜙, S) + Gt(𝜙, S). Neither are funds withdrawn nor additional funds invested
at dates between t = 1 and t = T − 1.

Definition 19 (Admissible Strategy). A trading strategy 𝜙 in S is admissible if 𝜙0 = 0
(no initial endowment/value), if it is self-financing and if its value process (Vt(𝜙, S))t∈{0,…,T}
is bounded from below, i.e. if it satisfies ∀t : Vt(𝜙, S) ≥ −𝛼, 𝛼 > 0. T denotes the set of all
admissible trading strategies.

Agents who can only implement admissible trading strategies are not allowed to produce
a position of too much debt. In other words, agents cannot implement trading strategies that
possibly lead to infinite debt (bankruptcy).

To conclude this sub-section, assume that markets are perfect (i.e. no transaction costs,
complete and symmetric information, etc.) and perfectly liquid. In summary, one ends up with:

Definition 20 (Discrete Market Model). A discrete market model  is a collection of:

� a finite state space Ω
� a filtration F
� a strictly positive probability measure P defined on ℘(Ω)
� a terminal date T ∈ N, T < ∞ and
� a set S ≡ {(Sk

t )t∈{0,…,T} : k ∈ {0,… , K}} of K + 1 strictly positive security price pro-
cesses

We write  = {(Ω,℘(Ω), F, P), T , S}.
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4.4 CENTRAL RESULTS IN DISCRETE TIME

This section’s main objective is to state the Fundamental Theorem of Asset Pricing in a
discrete market model. In economic terms, central topics of this section are arbitrage-freeness,
arbitrage-free contingent claim prices and market completeness.

A central problem in financial economics is the determination of fair contingent claim
prices. One can think of contingent claims as being derivative securities, consumption payoffs
or arbitrary claims payable at T . In order to proceed, however, a formal definition of a
contingent claim is needed.

Definition 21 (Contingent Claim). A contingent claim AT ∈ R
|Ω|
+ is a non-negative random

variable

AT : Ω → R+,𝜔 ↦ AT (𝜔)

AT (𝜔) is the amount payable if state 𝜔 ∈ Ω unfolds.

A natural question that arises is that of the attainability of contingent claims.

Definition 22 (Attainability). A contingent claim AT is attainable if there exists an admissible
trading strategy 𝜙 ∈ T that generates its payoff at maturity6, VT (𝜙) = AT , and if A0 ≡ V0(𝜙)
is the price or value of the contingent claim at t = 0. A ⊆ R

|Ω|
+ denotes the set of attainable

contingent claims.

Another question is which contingent claims are super-replicable.

Definition 23 (Super-Replication). A contingent claim AT is super-replicable if there exists
an admissible trading strategy𝜙 ∈ T that generates a payoff dominating the contingent claim’s
payoff, VT (𝜙) ≥ AT , and if A0 ≡ V0(𝜙) are the associated super-replication costs at t = 0.7

Such a trading strategy is said to super-replicate the contingent claim. A∗
⊆ R

|Ω|
+ denotes the

set of super-replicable contingent claims.

Obviously, the set of attainable contingent claims A is in general a sub-set of the set of
super-replicable contingent claims A∗

.

Definition 24 (Linear Price System). A linear price system is a positive linear function
𝜁 : A → R+ with

∀a, b ∈ R+,
∀AT , A′

T ∈ A
:

{
𝜁 (AT ) = 0 ⇔ AT = 0
𝜁 (a ⋅ AT + b ⋅ A′

T ) = a ⋅ 𝜁 (AT ) + b ⋅ 𝜁 (A′
T )

6Here and in the following, we drop dependence on S in the notations Vt(𝜙, S) and Gt(𝜙, S).
7Sometimes the definition includes the requirement that the trading strategy be chosen such that it
minimizes the super-replication costs A0.
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P denotes the set of all price systems that are consistent with the market model , i.e. where

∀𝜁 ∈ P,∀𝜙 ∈ T : 𝜁 (VT (𝜙)) = V0(𝜙)

To further analyze pricing issues, the formal concept of an arbitrage opportunity proves
useful.

Definition 25 (Arbitrage Opportunity). An arbitrage opportunity is a self-financing, admis-
sible trading strategy 𝜙 ∈ T whose value process satisfies V0(𝜙) = 0 and EP

0 [VT (𝜙)] > 0.

Definition 26 (Weak Arbitrage Opportunity). A weak arbitrage opportunity is a self-
financing strategy 𝜙 (not necessarily admissible) whose value process satisfies V0(𝜙) = 0 and
VT (𝜙) ≥ 0 with EP

0 [VT (𝜙)] > 0.

It should be clear that a security market where arbitrage opportunities exist cannot be in
equilibrium. An arbitrage opportunity arises, for example, if there are two or more different
prices for the same contingent claim. A simple arbitrage strategy would then be to sell
the contingent claim at a high price and to buy it at a lower price, thereby locking in the
difference as a risk-less profit. The profit is risk-less because the payoffs at date T of one
contingent claim long and one contingent claim short perfectly compensate each other. Of
course, every agent would try to achieve such a risk-less profit. Local non-satiation of agents
is a sufficient condition. Since agents’ budget sets are unbounded in the presence of arbitrage
opportunities, markets would inevitably be in disequilibrium. That is why the absence of
arbitrage opportunities is a crucial property of equilibrium models. However, from an economic
point of view, the assumption of arbitrage-freeness is rather mild.8

In light of the above considerations, establishing conditions that guarantee the absence
of arbitrage opportunities in the market model  is obviously of great importance, which is
what we will do next. To begin with, denote Q to be the set of all probability measures Q that
are equivalent to P and that make the discounted security (vector) price process (𝛽tSt)t∈{0,…,T}
a martingale. At this point, the main concepts for reproducing some of the central results of the
risk-neutral valuation approach—as originally formalized through the works of Harrison and
Kreps (1979) and of Harrison and Pliska (1981) (afterwards HK79 and HP81, respectively)—
are complete.

Lemma 1 (Weak Arbitrage implies Arbitrage) The existence of a weak arbitrage opportunity
𝜙 implies the existence of an arbitrage opportunity.

Refer to section 4.7 for a proof of this result and the following ones. The next proposition
is important from an economical point of view.

8For a discussion on this and other possible model assumptions (e.g. the law of one price) refer to section
1.2 of Pliska (1997).
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Proposition 1 (HP81, prop. 2.6). There is a one-to-one correspondence in the market
model = {(Ω,℘(Ω), F, P), T , S} between price systems 𝜁 ∈ P and P-equivalent martingale
measures Q ∈ Q via:

a. 𝜁 (AT ) = EQ
0 [𝛽T ⋅ AT ] and

b. Q(E) = 𝜁

(
S0

T1E

)
, E ∈ ℘(Ω)

Proposition 1 states that there is a one-to-one correspondence between a completely eco-
nomic concept, a price system, and a completely probabilistic concept, a martingale measure.
It should not come as a surprise that this has important implications for the market model. The
importance is impressively illustrated by the following theorem:

Theorem 1 (Fundamental Theorem). Consider the market model

 = {(Ω,℘(Ω), F, P), T , S}

The following three statements are equivalent:

1. There are no arbitrage opportunities in the market model .
2. The set Q of P-equivalent martingale measures is non-empty.
3. The set P of consistent linear price systems is non-empty.

This theorem can be generalized to allow for settings where time, processes and trading
are continuous and the time horizon is infinite. While the objects studied remain essentially the
same, the mathematical machinery needed in such cases goes well beyond the basic concepts
presented in this chapter. The subsequent section considers the continuous case.

Starting with the economically plausible assumption that a market model is free of arbi-
trage opportunities, Theorem 1 implies that there exists an equivalent martingale measure.
Why this last implication is so important should become clear in light of the following two
results:

Corollary 1 (HP81, p. 228). If the market model  is arbitrage-free, then there exists
a unique price A0 associated with any contingent claim AT ∈ A. It satisfies ∀Q ∈ Q : A0 =
EQ

0 [𝛽TAT ].

For arbitrary dates t ∈ {0,… , T}, the following result emerges.

Proposition 2 (HP81, prop. 2.9). For every AT ∈ A

𝛽tVt(𝜙) = EQ
t [𝛽T ⋅ AT ]

for all dates t ∈ {0,… , T}, for all trading strategies (𝜙t)t∈{0,…,T} ∈ T that generate AT and
for all P-equivalent martingale measures Q ∈ Q.

Proof. HP81, Harrison and Pliska (1981), p. 230.
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Suppose Theorem 1 applies to the market model . From corollary 1 and proposition 2
one obtains as the date t price At of an attainable contingent claim AT

At = 𝛽
−1
t ⋅ EQ

t [𝛽T ⋅ AT ]

with everything defined as before and particularly Q ∈ Q. This equation states that the date t
price of an attainable contingent claim is simply the conditional expectation of its discounted
payoff under an appropriate probability measure multiplied by the price of the bond.9 This
seems remarkably simple. Yet considerable effort has to be put in when one wishes to apply
this method to the real marketplace, i.e. when a specific price has to be computed.10

A brief discussion of market completeness should conclude this section.

Definition 27 (Market Completeness). The market model  is complete if it is arbitrage-
free and if every contingent claim is attainable or equivalently if A = R

|Ω|
+ .

In discrete time, a convenient characterization of complete markets is possible.

Proposition 3 (HK79). Suppose that the market model  is arbitrage-free. The market
model  is complete if and only if Q is a singleton.

HK79 do not give a formal proof but the argument is straightforward. In discrete time,
the resolution of uncertainty can generally be represented by so-called event trees.11 If one
calculates martingale branch probabilities, one observes that these are unique if markets are
complete. The corresponding equivalent martingale measure is then unique as well. Hence, Q

is a singleton if markets are complete.
The converse statement follows from the observation that if markets are incomplete then

there are always many probability measures contained in Q. In fact, there are an infinite
number of such probability measures in general. So Q has to be a singleton for markets to be
complete. For a formal proof refer to Lamberton and Lapeyre (1996), pp. 9–10.

As an aside, we want to demonstrate that, under certain circumstances, one can interpret
discounted martingale probabilities as Arrow-Debreu security prices.12 The defining property
of an Arrow-Debreu security is that it pays off one unit in a predetermined state and nothing in
other states. Consider an arbitrary Arrow-Debreu security, say, for example, the one that pays
in state �̃� ∈ Ω. Given the unique P-equivalent martingale measure Q of a complete market
model  its price A�̃�

0 at date 0 must be according to proposition 1—with the 1 at the �̃�-th
position in the payoff vector

A�̃�

0 = 𝛽TEQ
0 [(0,… , 1,… , 0)]

= 𝛽TQ(�̃�) ⋅ 1

9Note that 𝛽−1
t ≡ S0

t .
10One can, for example, rely on statistical estimation methods or on calibration approaches to come up
with a market-consistent martingale measure Q for a given market model.
11Event trees are one possible way to graphically represent filtrations. The main feature of these trees
is that every node has a unique predecessor. They should be carefully distinguished from recombining
trees that are sometimes used to illustrate the evolution of the stock price process in the binomial option
pricing model. In recombining trees, nodes may have more than one predecessor.
12Yet another expression for Arrow-Debreu security price is state price.
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Consequently, for there to be no arbitrage the price of the chosen Arrow-Debreu security must
equal the discounted probability under the unique P-equivalent martingale measure for state �̃�
to pertain. This insight is central to options pricing and is also applied in the continuous case.

4.5 CONTINUOUS-TIME CASE

In the continuous-time case, both the time interval and the state space are subsets of the
real line, t ∈ [0, T] ⊆ R+,Ω ⊆ R. Again, uncertainty is represented as a filtered probability
space (Ω, , F, P) where F ≡ {t∈[0,T]} is now an increasing family of sigma algebras13 with
0 ≡ {∅,Ω} and T ≡  .

The set of tradable assets is denoted S and consists of K + 1 stochastic processes, each
one modeling the evolution of an asset’s price over time, Sk : [0, T] × Ω → R. We normalize
the price of the risk-less bond by assuming that S0

t ≡ 1 ⇔ 𝛽t ≡ 1, t ∈ [0, T], making it the
numeraire of the economy and setting the risk-less rate equal to zero. For the moment, we set
K = 1 such that there is only one risky asset in the economy (e.g. stock, stock index, short
rate). We simply write S for S1.

We now proceed, following formally Protter (2005), ch. 2, by defining “good” trading
strategies for which stochastic integrals—i.e. the analogon of the gains process in definition
17—are defined.

Definition 28 (Simple Predictable Trading Strategy). A trading strategy (𝜙t)t∈[0,T] is said
to be simple predictable if 𝜙t can be represented by

𝜙t = 𝜙010(t) +
n∑

i=1

𝜙i1(𝜏i,𝜏i+1](t)

for a finite sequence of stopping times 0 = 𝜏1 ≤ ... ≤ 𝜏n ≤ T < ∞. Also,𝜙i ∈ 
𝜏i

and ||𝜙i
|
| < ∞

almost surely. The set of such trading strategies is denoted H.

Strategies of type H are the fundamental building block for stochastic integration in
continuous time. For a given stochastic process S, we define a linear mapping It : H → L0

where L0 is the space of finite valued random variables with appropriate topology. To this end,
let

It(𝜙, S) ≡ 𝜙0S0 +
n∑

i=1

𝜙ti
(Sti+1

− Sti
)

for 𝜙 ∈ H and times 0 = t1 ≤ ... ≤ tn ≤ t ≤ T < ∞. We write It(𝜙, S) = ∫
t

0 𝜙sdSs for the case
where n → ∞. The value process of a trading stragy 𝜙 in S is denoted (Vt(𝜙, S))t∈[0,T].

13A sigma algebra is closed under countably infinite unions of sets contained in the algebra such that
condition 3. in definition 3 is to be replaced by 3.′ E1, E2,… , E∞ ∈  ⇒

⋃∞
i=1 Ei ∈  . Cf. Bhattacharya

and Waymire (2007), ch. 2.
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Definition 29 (Gains Process). The gains process (Gt(𝜙, S))t∈[0,T] of a trading strategy
𝜙 ∈ H in S is given by

Gt(𝜙, S) =
∫

t

0+
𝜙sdSs = lim

n→∞

n∑

i=1

𝜙ti
(Sti+1

− Sti
)

with 0 = t1 ≤ ... ≤ tn ≤ t ≤ T < ∞.

We then get the following central definitions.

Definition 30 (Total Semimartingale). A process S is a total semimartingale if S is right
continuous with left limits (càdlàg) and F-adapted and if It : H → L0 is continuous.

The continuity requirement in the definition ensures that small changes in the trading
strategy (or a portfolio at a specific time) cannot lead to big perturbations in the value of the
gains process or the value of a portfolio.

Definition 31 (Semimartingale). A process S is a semimartingale if, for each stopping time
𝜏 ∈ [0, T], the stopped process (St∧𝜏 )t∈[0,T] is a total semimartingale.

These concepts might seem rather abstract. However, for a continuous market model they
define on the one hand the set of acceptable trading strategies and on the other hand the set of
stochastic processes appropriate to model a financial market in general and the price process of
a traded asset in particular, respectively. If either the trading strategy is not simple predictable
or the stochastic processes, i.e. the assets’ price processes, are not semimartingales then the
gains process of definition 29 is not defined. Fortunately, both concepts are quite general and in
particular the class of semimartingales encompasses as special cases almost any, if not every,
stochastic process used in mathematical finance for asset pricing.

For financial applications, a further characterization of semimartingales is helpful (cf. for
details Protter (2005), p. 55).

Definition 32 (Decomposable Process). An F-adapted process S is decomposable if it can
be decomposed as St = S0 + Mt + At where M0 = A0 = 0 and M is a locally square integrable
martingale, and A is a càdlàg, F-adapted process with paths of finite variations on compacts.14

Two processes are worth mentioning as special cases of semimartingales (cf. Protter
(2005), p. 17 and p. 20).

Definition 33 (Brownian Motion). Let (Zt)t∈[0,T] be an F-adapted process taking values in

R (Rk, 1 < k < ∞). Then Z is a (k-dimensional) standard Brownian motion if:

1. Z0 = 0 almost surely
2. Zt − Zs is independent of s for 0 ≤ s < t ≤ T
3. Zt − Zs is a Gaussian random variable (vector) with mean zero and variance of t − s

(variance matrix (t − s) for a given non-random matrix  and k > 1)

14For example, if A is deterministic it has finite variations on compacts.
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According to Theorem 26 in Protter (2005) there always exists a modification of a standard
Brownian motion that has continuous paths almost surely.

Example 1 (Bachelier Model). In the Bachelier model, the index process (St)t∈[0,T] is given

as an arithmetic Brownian motion with St = S0 + ∫
t

0 𝜇dt + ∫
t

0 𝜎dZs where Z is a standard
Brownian motion and 𝜇, 𝜎 > 0 are fixed. Obviously, S is decomposable and therewith a
semimartingale.

Definition 34 (Lévy Process). Let (Nt)t∈[0,T] be an F-adapted process taking values in R

and N0 = 0 almost surely. Then N is a Lévy process if:

1. Nt − Ns is independent of s for 0 ≤ s < t ≤ T
2. Nt − Ns has the same distribution as Nt−s for 0 ≤ s < t ≤ T, i.e. it has stationary incre-

ments
3. lims→t Ns = Nt almost surely, i.e. it is continuous in probability

By Theorem 30 of Protter (2005) there always exists a unique modification of a Lévy
process that is càdlàg and also a Lévy process.

Brownian motion and Lévy processes are central in modeling financial markets. In fact,
all models presented in this book are either built on Brownian motion (e.g. the Black-Scholes-
Merton model, cf. Black and Scholes (1973) and Merton (1973)) or on a Lévy process (e.g. the
jump-diffusion model of Merton, cf. Merton (1976)) or on both (e.g. the stochastic volatility
jump model of Bates, cf. Bates (1996)).

We need as before a further qualification of trading strategies.

Definition 35 (Admissible Strategy). A trading strategy (𝜙t)t∈[0,T] ∈ H in S is admissi-

ble if 𝜙0 = 0 and if ∫ t
0 𝜙sdSs ≥ −𝛼 with 𝛼 ≥ 0 and S a semimartingale. We denote this set

by T.

Admissibility in continuous market models ensures, apart from the avoidance of
bankruptcy of agents, that certain trading strategies known to generate arbitrage opportu-
nities (e.g. the so-called doubling strategy) are excluded. This is because such strategies rely
on the possibility of producing a position of infinite debt (in the limit).

Definition 36 (Self-Financing Strategy). A trading strategy (𝜙t)t∈[0,T] ∈ H is self-financing
if

𝜙tSt = 𝜙0S0 +
∫

t

0
𝜙sdSs

Gains from trade are only induced by random changes in S. 𝜙tSt is càdlàg.

The concept of an arbitrage opportunity carries over from the discrete time case.
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Definition 37 (Arbitrage Opportunity). An arbitrage opportunity in S is a self-financing,
admissible trading strategy 𝜙 ∈ T whose value process satisfies V0(𝜙, S) = 0, VT (𝜙, S) ≥ 0
and P

(
VT (𝜙, S) > 0

)
> 0.

We now follow the tradition initiated in the seminal paper by Delbaen and Schachermayer
(1994) and define a number of sets central to arbitrage pricing. We have:

� A = {∫ T
0 𝜙sdSs,𝜙 ∈ T}: all terminal wealths (i.e. contingent claims) that can be generated

by admissible trading strategies in the semimartingale S
� B = A − 

0
+: all functions dominated by elements of A with 

0
+ being positive finite

random variables
� A∞ = A ∩ 

∞: the intersection of A with 
∞, the space of bounded functions

� B∞ = B ∩ 
∞: the intersection of B with 

∞; ̄B
∞

denotes the closure of B∞

We then have the following conditions.

Definition 38 (NA—NFLVR). A semimartingale S satisfies the no arbitrage condition (NA)
if B∞ ∩ 

∞
+ = {0}. It satisfies the no free lunches with vanishing risk condition (NFLVR) if

̄B
∞ ∩ 

∞
+ = {0}.

Finally, we can state the Fundamental Theorem of Asset Pricing for the continuous setup.

Theorem 2 (Fundamental Theorem of Asset Pricing—One Dimensional). Let S be a
bounded real-valued semimartingale. There exists a P-equivalent martingale measure Q for S
if and only if S satisfies NFLVR.

Proof. Cf. Delbaen and Schachermayer (1994). For a comprehensive exposition of the whole
theory refer to Delbaen and Schachermayer (2004).

This version is the original one which, however, holds for the general case of a multi-
dimensional semimartingale S as well.15 With respect to the above set definitions, we have
mainly to make, for K > 1, the change

A =

{
K∑

k=1
∫

T

0
𝜙

k
sdSk

s ,𝜙k ∈ T

}

Here, each Sk is a semimartingale. We now have everything together to define the general
continuous market model.

15“The process S, sometimes denoted (St)t∈R+
is supposed to be R+-valued, although all proofs work

with a d-dimensional process as well”, cf. Delbaen and Schachermayer (1994), p. 464.
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Definition 39 (Continuous Market Model). A continuous market model is a collection of:

� a continuous state space Ω ⊆ R
� a filtration F of non-decreasing sigma algebras
� a probability measure P defined on the sigma algebra 

� a terminal date T , 0 < T < ∞
� a set of simple predictable trading strategies H for which gains processes are defined and
� a set of K + 1 tradable assets S ≡ {(Sk

t )t∈[0,T] : k ∈ {0,… , K}} where each Sk is a semi-
martingale and S0 is (locally) risk-less and strictly positive

We write  = {(Ω, , F, P), T , H, S}.

We then have:

Theorem 3 (Fundamental Theorem of Asset Pricing—Multi-Dimensional). Let a contin-
uous market model  be given. There exists a P-equivalent martingale measure Q (EMM)
for S, the set of semimartingales representing tradable assets, if and only if this set satisfies
NFLVR.

In practical applications there are basically two routes to apply this theorem:

� model without EMM: one has a model with real-world dynamics and is able to derive
an EMM thereby ensuring NFLVR

� model with EMM: one starts with a model with risk-neutral dynamics under an EMM
and uses it—knowing that NFLVR applies—to value contingent claims (e.g. options and
other financial derivatives)

Let us switch back to the case K = 1, i.e. with one risky asset only (the general case
is easily accounted for by a change of notation). A contingent claim is a T -measurable,
integrable payoff AT at time T . A contingent claim is attainable (or redundant) in the market
model  if there exists an admissible trading strategy 𝜙 ∈ T that is self-financing and has
VT (𝜙, S) = AT . In other words, the payoff can be perfectly replicated by a strategy in the
tradable assets.

For an attainable contingent claim A ∈ A with replicating strategy 𝜙 ∈ T we have

AT = VT (𝜙, S) = V0(𝜙, S) +
∫

T

0+
𝜙sdSs

Taking expectations under the EMM yields

EQ
0 (VT (𝜙, S)) = V0(𝜙, S) + EQ

0

(

∫

T

0+
𝜙sdSs

)

Since the last term equals zero due to the martingale property of S we deduce the risk-neutral
pricing formula (cf. Harrison and Pliska (1981), p. 240)

V0(𝜙, S) = EQ
0 (VT (𝜙, S)) (4.1)
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The present value of a contingent claim equals its expected payoff under the EMM. It is easily
verified that arbitrage opportunities arise if equation (4.1) does not hold. With 𝛽t ≠ 1 we get

V0(𝜙, S) = EQ
0 (𝛽TVT (𝜙, S)) (4.2)

which means that the present value equals the expectation of the discounted payoff under the
EMM. Similarly, for 0 < t < T we finally have

Vt(𝜙, S) = 𝛽
−1
t EQ

0 (𝛽TVT (𝜙, S)) (4.3)

To define the value process (At)t∈[0,T] of an attainable contingent claim A ∈ A identify
At = Vt(𝜙, S) for 𝜙 ∈ T, self-financing and AT = VT (𝜙, S). We then see that the discounted
value process is a martingale under the EMM

EQ
0 (𝛽tAt) = EQ

0 (𝛽TVT (𝜙, S)) = A0

which follows immediately from (4.2) and (4.3).
Finally, let us consider completeness of the continuous model . Define the set of all

T -measurable, integrable payoffs AT by C. The market model is then complete if C = A, i.e.
the set of all contingent claims coincides with the set of attainable contingent claims.

Proposition 4 (Market Completeness). The continuous market model  is complete if the
set of P-equivalent martingales measures Q is a singleton.

This result also holds for the multi-dimensional case. It is sometimes called the Second
Fundamental Theorem of Asset Pricing. Cf. Björk (2004), Theorems 10.17 and 14.18, for
versions of this result for the one- and multi-dimensional case, respectively, when Brownian
motion drives uncertainty.

4.6 CONCLUSIONS

This chapter looks at the Fundamental Theorem of Asset Pricing and related concepts and
results. It is not possible to cover all relevant aspects of this cornerstone of modern financial
theory in a single chapter. However, it provides at least an overview of the fundamental
framework on which all subsequent theoretical and numerical analyses are based.

In particular, all subsequent chapters will make heavy use of the risk-neutral discount-
ing approach to value European and American options. Especially when working in higher
dimensional settings (with multiple risk factors) and using Monte Carlo simulation as valuation
method, the power of the risk-neutral valuation paradigm will be impressively illustrated.

4.7 PROOFS

4.7.1 Proof of Lemma 1

Proof. If for 𝜙 we have Vt(𝜙) ≥ 0 then it already satisfies definition 25. So assume the
contrary. Then there exist t < T , E ∈ t, a < 0 with 𝜙t ⋅ St = a on E and 𝜙u ⋅ Su ≤ 0 for
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t < u ≤ T . Now define another trading strategy 𝜓 through 𝜓u ≡ 0 for u ≤ t and 𝜓u(𝜔) ≡ 0 if
u < t as well as 𝜔 ∉ E. If u > t but 𝜔 ∈ E set

𝜓
k
u (𝜔) ≡

{
𝜙

0
u(𝜔) − a∕S0

t (𝜔) for k = 0
𝜙

k
u(𝜔) for k = 1, 2,… , K

It remains to show that this predictable trading strategy is self-financing and admissible. For
𝜔 ∈ E

𝜓t+1 ⋅ St =
(
𝜙

0
t+1 − a∕S0

t

)
S0

t +
K∑

k=1

𝜙
k
t+1Sk

t = 𝜙t ⋅ St − a = 0

by the definition of a such that 𝜓 is self-financing. For u > t and 𝜔 ∈ E one has similarly

𝜓u ⋅ Su =
(
𝜙

0
u − a∕S0

t

)
S0

u +
K∑

k=1

𝜙
k
uSk

u = 𝜙u ⋅ Su −
aS0

u

S0
t

≥ 0

implying Vt(𝜓) ≥ 0 and so 𝜓 is admissible. Realizing that S0
T > 0 implies VT (𝜓) > 0 on

E with EP
0 [VT (𝜓)] > 0 yields the assertion of the lemma (cf. Harrison and Pliska (1981),

p. 228).

4.7.2 Proof of Proposit ion 1

Proof. First, let Q ∈ Q and define 𝜁 by (a). Take an arbitrary 𝜙 ∈ T and write

𝛽TVT (𝜙) = 𝛽T (𝜙T ⋅ ST ) +
T−1∑

t=1

𝛽t(𝜙t − 𝜙t+1) ⋅ St

= 𝛽1(𝜙1 ⋅ S1) +
T∑

t=2

𝜙t ⋅ (𝛽tSt − 𝛽t+1St+1)

after several regroupings of terms in the first sum. Now use the definition of 𝜁

𝜁 (VT (𝜙)) = EQ
0

[
𝛽TVT (𝜙)

]

= EQ
0

[
𝛽1(𝜙1 ⋅ S1)

]
+ EQ

0

[
T∑

t=2

𝜙t ⋅ (𝛽tSt − 𝛽t+1St+1)

]

= EQ
0

[
𝛽1(𝜙1 ⋅ S1)

]

since, by assumption, (𝛽tSt)t∈{0,…,T} is a martingale under Q and 𝜙 is predictable. The last

term gives EQ
0 [𝛽1(𝜙1 ⋅ S1)] = 𝜙1 ⋅ 𝛽0S0 ≡ V0(𝜙) showing consistency of 𝜁 .

Second, assume 𝜁 ∈ P and define Q by (b). For 𝜔 ∈ Ω one clearly has Q(𝜔) = 𝜁 (S0
T1

𝜔
) >

0 since 𝜁 is consistent with . This establishes the first characteristic of a P-equivalent
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martingale measure. The second follows from observing that the trading strategy 𝜙 ∈ T with
𝜙

0
≡ 1 and 𝜙

k
≡ 0 for k ≠ 0 yields

V0(𝜙) = 𝜁 (VT (𝜙))

= 𝜁 (S0
T1Ω)

= 1

such that Q(Ω) = 1. As a consequence, 𝜁 (AT ) = 𝛽TEQ
0 [AT ] for AT ∈ A.

It remains to establish that Q is a martingale measure for (𝛽tSt)t∈{0,…,T}. The case k = 0 is
trivial—this is the risk-less numeraire. Take k ≠ 0 arbitrary and consider the trading strategy
𝜁 ∈ T with𝜙k

t ≡ 1t≤𝜏 and𝜙0
t ≡ (Sk

𝜏
∕S0

𝜏
)1t>𝜏 for 0 < 𝜏 < T being a stopping time. Furthermore,

𝜙
i
t ≡ 0 for all other securities i and all dates t. Obviously, V0(𝜙) = Sk

0 and VT (𝜙) = (Sk
𝜏
∕S0

𝜏
)S0

T =
S0

T𝛽𝜏Sk
𝜏
. We get

𝜁 (VT (𝜙)) = 𝜁

(
S0

T𝛽𝜏Sk
𝜏

)

= EQ
0

(
𝛽TS0

T𝛽𝜏Sk
𝜏

)

= EQ
0

(
𝛽
𝜏
Sk
𝜏

)

= Sk
0

where the last equality follows from consistency of 𝜁 . Realizing that k is arbitrary, this yields
the last characteristic Q has to fulfill to make the discounted securities process (𝛽tSt)t∈{0,…,T}
a vector martingale. So Q ∈ Q completing the proof (cf. Harrison and Pliska (1981),
p. 227).

4.7.3 Proof of Theorem 1

Proof. Suppose Q is non-empty. Proposition 1 then implies that P is non-empty as well.
Consider a trading strategy 𝜙 ∈ T with V0(𝜙) = 0. Then there is a 𝜁 ∈ P such that 𝜁 (VT (𝜙)) =
V0(𝜙) = 0 and so by the definition of a linear price system VT (𝜙) = 0. It remains to show that
the first statement implies the second and third.

Start by defining two sets:

A+
≡ {AT ∈ A : EP

0 (AT ) ≥ 1}

A0
≡ {AT : AT = VT (𝜙), V0(𝜙) = 0,𝜙 self-financing}

Obviously, if there are no arbitrage opportunities then A+ ∩ A0 = ∅. The next step is to show
that there exists a consistent linear price system 𝜁 ∈ P. Since A+ is a closed and convex subset
of R|Ω| and A0 is a linear subspace, the Separating Hyperplane Theorem can be applied to
establish the existence of a linear functional L on R|Ω| such that:

1. L(AT ) = 0 for AT ∈ A0 and
2. L(AT ) > 0 for AT ∈ A+



Risk-Neutral Valuation 69

Now define 𝜁 (AT ) ≡ L(AT )∕L(S0
T ) which satisfies definition 24. One needs to show that

indeed 𝜁 ∈ P, i.e. that it is consistent with . Take an admissible trading strategy 𝜙 ∈ T and
define a new self-financing trading strategy by

𝜓
k
t ≡

{
𝜙

0
t − V0(𝜙) for k = 0

𝜙
k
t for k = 1, 2,… , K

It holds V0(𝜓) = 0 and VT (𝜓) = VT (𝜙) − V0(𝜙)S0
T with VT (𝜓) ∈ A0 so that 𝜁 (VT (𝜓)) = 0.

We get

𝜁 (VT (𝜓)) = 𝜁

(
VT (𝜙) − V0(𝜙)S0

T

)

= 𝜁 (VT (𝜙)) − V0(𝜙)𝜁
(
S0

T

)

= 𝜁 (VT (𝜙)) − V0(𝜙)

= 0

using linearity and normalization of 𝜁 relative to S0
T , i.e. 𝜁 (S0

T ) = 1. From this, 𝜁 (VT (𝜙)) =
V0(𝜙) for𝜙 ∈ T arbitrary and 𝜁 ∈ P. Hence, P is non-empty and so is Q due to proposition 1—
completing the proof (cf. Harrison and Pliska (1981), pp. 228–229).





CHAPTER 5
Complete Market Models

5.1 INTRODUCTION

Ever since the publication of the seminal works by Black, Scholes and Merton (BSM) in 1973
(cf. Black and Scholes (1973) and Merton (1973)), the BSM model—which is a continuous
market model—and associated option pricing formulas have been considered a benchmark for
option pricing. Benchmark in the sense that they provide closed-form solutions in a simple
but still somehow realistic setting. The original and famous formula is derived in the papers
on the basis of two different arguments. The first one in Black and Scholes (1973) is an
equilibrium argument saying that a risk-less portfolio should yield the risk-less interest rate
in equilibrium. The second, and rather widely applicable, one from Merton (1973) is that the
value of a (European) option should equal the value of a portfolio that, in combination with
an appropriate trading strategy, perfectly replicates the payoff at maturity. It is essentially the
key argument of the general arbitrage pricing theory presented in Chapter 4.

Several years later, in 1979, Cox, Ross and Rubinstein presented (cf. Cox et al. (1979))
their binomial option pricing model. This model assumes in principle a BSM economy but
in discrete time with discrete state space. Whereas the BSM model necessitates advanced
mathematics and the handling of partial differential equations (PDE), the CRR analysis relies
on fundamental probabilistic concepts only. Their representation of uncertainty by binomial
(recombining) trees is still today the tool of choice when one wishes to illustrate option topics
in a simple, intuitive way. Furthermore, their numerical approach allows not only European
options but also American options to be valued quite as easily.

The main characterizing feature of both market models is that they are complete: every
contingent claim maturing at some future date can be replicated by a trading strategy in the
two tradable assets available—a risky asset (e.g. an index or stock) and a risk-less bond. The
two models are also consistent in the sense that the CRR model converges to the BSM setup
when the time interval between two consecutive dates tends to zero.

This chapter presents in the next section the BSM model and some associated aspects of
the pricing theory. Section 5.3 analyzes how option prices and other quantities of interest react
to changes in the model parameters. The major topic is the so-called Greeks, i.e. the delta and
theta of an option, for example. Section 5.4 introduces the CRR model.

71
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5.2 BLACK-SCHOLES-MERTON MODEL

5.2.1 Market Model

We consider an economy 
BSM with final date T , 0 < T < ∞. Uncertainty in the economy is

represented by a filtered probability space {Ω, , F, P}. Ω denotes the continuous state space,
 an 𝜎-algebra, F a filtration—i.e. a family of non-decreasing 𝜎-algebras F ≡ {t∈[0,T]} with
0 ≡ {∅,Ω} and T ≡ —and P the real or objective probability measure.

Against this background, we model for 0 ≤ t ≤ T the risk-neutral evolution of the relevant
stock index according to the stochastic differential equation (SDE)

dSt

St
= rdt + 𝜎dZt (5.1)

St denotes the index level at date t, r the constant risk-less short rate, 𝜎 the constant volatility
of the index and Zt a standard Brownian motion. Since we model an index instead of a single
stock, we abstract from dividend related modeling issues.1 The stochastic process S generates
the filtration F, i.e. t ≡  (S0≤s≤t).

The differential equation that a risk-less zero-coupon bond satisfies is

dBt

Bt
= rdt (5.2)

The time t value of a zero-coupon bond paying one unit of currency at T with 0 ≤ t < T is
Bt(T) = e−r(T−t) with BT ≡ 1.

It is well-known that the BSM model


BSM = {{Ω, , F, P}, T , {S, B}}

is complete and that the P-equivalent martingale measure Q is unique. Cf. Björk (2004),
Theorems 8.3 and 10.17, for completeness and uniqueness of the risk-neutral measure Q,
respectively.

5.2.2 The Fundamental PDE

We are now interested in the value V of a contingent claim, say a European call option on
the index. We follow the analysis in Wilmott et al. (1995), sec. 3.5. Assume that the value
depends on the index level S and time t only, i.e. V(S, t). Itô’s lemma, stated as proposition 5
in sub-section 5.6.1, gives the incremental change of the value V over time. Omitting time
subscripts, we get

dV = 𝜕V
𝜕S

dS + 1
2
𝜕

2V
𝜕S2

v2dt + 𝜕V
𝜕t

dt

1However, if the index would pay a continuous dividend yield of dy one would replace the risk-neutral
drift r by r̄ = r − dy.
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From equation (5.1) we know dS and v = 𝜎S. Then

dV = 𝜕V
𝜕S

(rSdt + 𝜎SdZt) +
1
2
𝜕

2V
𝜕S2

𝜎
2S2dt + 𝜕V

𝜕t
dt

= 𝜎S
𝜕V
𝜕S

dZt +
(

rS
𝜕V
𝜕S

+ 1
2
𝜎

2S2 𝜕
2V
𝜕S2

+ 𝜕V
𝜕t

)

dt (5.3)

Define now the delta of the contingent claim (think again of a European call option) by

Δt ≡
𝜕Vt

𝜕St

and set up a portfolio Π0 = V0 − Δ0S0. In other words, a portfolio consisting of one option
long and Δ units of the index short. How does this portfolio evolve over time? Building on
equations (5.1) and (5.3)

dΠ = 𝜎S
(
𝜕V
𝜕S

− Δ
)

dZt +
(

rS
𝜕V
𝜕S

+ 1
2
𝜎

2S2 𝜕
2V
𝜕S2

+ 𝜕V
𝜕t

− rΔS

)

dt (5.4)

Recognizing the definition of Δ, (5.4) simplifies to

dΠ =
(

1
2
𝜎

2S2 𝜕
2V
𝜕S2

+ 𝜕V
𝜕t

)

dt (5.5)

As a consequence of adding a delta short position, the portfolio becomes (locally) risk-less. To
avoid arbitrage, a risk-less portfolio must yield the risk-less short rate according to equation
(5.2). We must therefore have dΠ = rΠdt as well. Equating this with (5.5)

r
(

V − 𝜕V
𝜕S

)

dt =
(

1
2
𝜎

2S2 𝜕
2V
𝜕S2

+ 𝜕V
𝜕t

)

dt

and rearranging, we finally arrive at the famous and central BSM partial differential equation
(PDE)

𝜕V
𝜕S

+ 1
2
𝜎

2S2 𝜕
2V
𝜕S2

+ 𝜕V
𝜕t

− rV = 0 (5.6)

This equation holds for every contingent claim whose value V depends on S and t only. This is
what makes it so important. It cannot be overemphasized that the whole argument hinges on
the assumption that the portfolio made up of the contingent claim and the short delta position
becomes risk-less. However, we are on quite safe ground due to the completeness of the market
model.
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5.2.3 European Opt ions

Although fundamentally of high importance, the BSM equation (5.6) is not the only reason
for the popularity of the BSM model.2 It is also the fact that this PDE allows for an explicit,
i.e. analytical, solution in the case of European call and put options.

To this end, denote by C(S, t) the value at time t of a European call option on the index S
with payoff hC

T = max[ST − K, 0] where K > 0 is the fixed strike price. Obviously, by arbitrage
we have C(S, T) = hC

T such that we get a boundary condition, i.e. a final condition, for the PDE
(5.6). We also know that C(S = 0, t) = 0 since in this case the option will never show a positive
value at maturity.3 Finally, when St → ∞ then C(S, t) ≈ St since K becomes negligible.

Taking one of a number of different routes,4 one can show that the time t value of the
European call option is

C(S, K, t, T , r, 𝜎) = St ⋅ N(d1) − e−r(T−t) ⋅ K ⋅ N(d2) (5.7)

where

N(d) = 1
√

2𝜋 ∫

d

−∞
e−

1
2

x2
dx

d1 =
log St

K
+
(
r + 𝜎

2

2

)
(T − t)

𝜎

√
T − t

d2 =
log St

K
+
(
r − 𝜎

2

2

)
(T − t)

𝜎

√
T − t

To derive the corresponding formula for a European put option, one can apply put-call
parity. To this end, consider a portfolio of one unit of the index S long, one European put option
with strike K long and one European call option with the same strike short. The portfolio pays
at maturity T

S + P − C = S + max[K − S, 0] − max[S − K, 0]

You now have to distinguish two cases. First, S < K. Then the payoff is S + K − S = K.
Second, S ≥ K. In this case, the payoff is S − S + K = K. Alas, the portfolio S + P − C pays
K for sure. To avoid arbitrage, the time t value of the portfolio therefore must be

St + Pt − Ct = e−r(T−t)K

2Robert Merton and Myron Scholes received the Nobel Prize for economics in 1997 mainly for this
general approach to option pricing and its widespread applicability in mathematical finance. Cf. the
article by Robert Jarrow (Jarrow, 1999)—honoring the Nobel Prize winners and their theory—whose
title says “A Partial Differential Equation That Changed the World”.
3Once St = 0, it will stay there according to equation (5.1).
4Cf. Wilmott et al. (1995), ch. 5, for a similarity solution approach to equation (5.6) or Björk (2004),
ch. 7, for a risk-neutral/probabilistic approach.
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From this, the European put option value is given by

Pt = Ct − St + e−r(T−t)K (5.8)

We therefore have for a European put option with payoff hP
T = max[K − ST , 0] at maturity

the following BSM formula

P(S, t) = e−r(T−t) ⋅ K ⋅ N(−d2) − St ⋅ N(−d1) (5.9)

In what follows we are mainly interested in European options. So speaking of an “option”
means a European option if not otherwise indicated. To get a better feeling of how the value
of an option depends on the model and option parameters, we analyze an example option with
the following parameters:

� S0 = 100: initial index level
� K = 100: strike price
� T = 1.0: maturity in years
� r = 0.05: risk-less short rate
� 𝜎 = 0.2: volatility of the index level
� t = 0: valuation date, i.e. present date

The Python script in sub-section 5.6.2 implements the valuation formulas for the European
call option and put option, contains the above parameters and generates the graphical output
for the call version of the option as shown in Figure 5.1. Figure 5.2 shows the respective output
for the put option. Every sub-plot shows variations of the base case parameters with respect
to a single parameter only.

We can see the following in Figures 5.1 and 5.2:

1. moneyness: the at-the-money call (K = S0 = 100, ATM) is worth about 10.4, much more
than the put which is worth about 5.6 only; the more the options become in-the-money
(K < 100 for the call, K > 100 for the put, ITM) the more they become worth; the opposite
is true the more the options come out-of-the-money (K > 100 for the call, K > 100 for
the put, OTM)

2. time-to-maturity: the higher the time-to-maturity the more the options are worth; there
are European options, however, for which this relationship does not necessarily hold (e.g.
deep ITM European put options)

3. short rate: an increase in the short rate increases the value of the call option and decreases
the value of the put option; under risk-neutrality the index drifts with the short rate and
the higher the drift the better for the call option (probability increases for ITM expiration)
and the worse for the put option (probability increases for OTM expiration)

4. volatility: a higher volatility increases both the value of the call and the value of the put
option since the probability for ITM expiration increases in both cases
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F IGURE 5.1 Value of the example European call option for varying strike K, maturity date T, short
rate r and volatility 𝜎

5.3 GREEKS IN THE BSM MODEL

In particular for hedging and risk management purposes, it is of importance to know how option
values change with marginal changes in a model parameter. To derive the BSM equation (5.6),
a portfolio is set up that adds a short delta position to a long position in the option. The delta
Δ = 𝜕V

𝜕S
, i.e. the first partial derivative of the option’s value with respect to the index level, is

one of the so-called Greeks (which refers to the Greek origin of the letter’s name).
The analytical valuation formula (5.7) allows closed-form expressions to be derived for

the most important Greeks as well. In what follows, we provide expressions for the Greeks of
a European call option. For the delta, we simply get (omitting time subscripts)

Δ = 𝜕C
𝜕S

= N(d1) (5.10)

The gamma is the second partial derivative with respect to the index level

Γ = 𝜕
2C
𝜕S2

=
N′(d1)

S𝜎
√

T − t
(5.11)
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FIGURE 5.2 Value of the example European put option for varying strike K, maturity date T, short
rate r and volatility 𝜎

The theta of an option is, by convention, the negative first partial derivative with respect
to time-to-maturity t∗ = T − t

Θ = − 𝜕C
𝜕t∗

= −
SN′(d1)𝜎

2
√

T − t
− re−r(T−t)KN(d2) (5.12)

The rho of an option is the first partial derivative with respect to the short rate r

𝜌 = 𝜕C
𝜕r

= K(T − t)e−r(T−t)N(d2) (5.13)

The vega—which is obviously not a Greek letter—is the first partial derivative with
respect to the volatility 𝜎

V = 𝜕C
𝜕𝜎

= SN′(d1)
√

T − t (5.14)

Referring to Figure 5.1 and arguing graphically, the theta, rho and vega provide closed-
form expressions for the slope, given a certain parameter set, for three of the four sub-plots.
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F IGURE 5.3 The delta of the European call option with respect to maturity date T and strike K

In the following, we provide plots of all the Greeks for the example call with different time-
to-maturities T and different strikes K. The Python script of sub-section 5.6.3 implements the
Greek formulas and generates the 3d plots.

Some observations are worth pointing out:

� delta: Figure 5.3 shows that the delta of the call option varies both with moneyness
and maturity date T; it is between 1 and 0 for far ITM options and far OTM options,
respectively, with short maturity; delta changes most around the ATM level for short
maturities

� gamma: Figure 5.4 shows that the gamma has the highest values around the ATM level
for short maturities; this is in line with the observation that delta changes most around the
ATM level

� theta: Figure 5.5 paints a similar picture to gamma but with changed sign; theta is most
important around the ATM level and for short maturities

� rho: Figure 5.6 illustrates that rho increases in importance with higher T (longer time-to-
maturity) and with moneyness from OTM to ATM to ITM

� vega: Figure 5.7 shows vega increasing with T and decreasing from the ATM level in
both directions, i.e. OTM and ITM

It is worth pointing out that the shapes of the Greeks in the different figures partly depend on
the specific model parameters chosen and in particular on the option being a call. However,
gamma and vega are the same for the put option counterpart of the call. Furthermore, some
general remarks can be made:

1. short-term: most Greeks (delta, gamma, theta, vega) reach their highest/lowest values
around the ATM level, generally at short maturities (apart from vega)
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FIGURE 5.4 The gamma of the European call option with respect to maturity date T and strike K

2. long-term: for options with longer maturities only rho and vega have significant value
impact; this is due to their role in determining how probable it is that the option expires
ITM

In practice, option traders try to hedge one or several of the risks represented by the
Greeks. For example, traders speak of “delta neutral” or “vega hedged” positions which means

F IGURE 5.5 The theta of the European call option with respect to maturity date T and strike K
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F IGURE 5.6 The rho of the European call option with respect to maturity date T and strike K

F IGURE 5.7 The vega of the European call option with respect to maturity date T and strike K
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that (small) moves in the underlying or the volatility are offset by certain hedge positions in
the underlying or other options.5 Hedge activity generally does not include theta since the
constant passage of time is something one has to accept and since it is what option premiums
are paid for to a great extent.

5.4 COX-ROSS-RUBINSTEIN MODEL

This section presents some fundamental aspects of the binomial option pricing approach
pioneered by CRR in Cox et al. (1979). We focus on those aspects that allow an implementation
in Python. A detailed treatment of the model is found, for example, in Pliska (1997).

We are given a discrete market model with fixed filtered probability space {Ω, , F, P}
where Ω is finite. As in the BSM model, there are two securities traded: a risky stock index
S and a risk-less zero-coupon bond B. The time horizon [0, T] is divided into equidistant
time intervals Δt so that one gets T∕Δt + 1 points in time t ∈ {0,Δt, 2 ⋅ Δt,… , T}. The zero-
coupon bond grows annually in value by the risk-less short rate r, Bt = B0ert where we set for
convenience BT ≡ 1, i.e. we also have Bt = BTe−r(T−t) = Bt = e−r(T−t). Together


CRR = {{Ω, , F, P}, T , {S, B}}

Starting from a strictly positive, fixed stock index level of S0 at t = 0, the stock index
evolves according to the law

St+Δt ≡ St ⋅ m

where m is selected randomly from {u, d}. Here, 0 < d < erΔt
< u ≡ e𝜎

√
Δt as well as u ≡

1
d

as an important simplification. 𝜎 is a volatility parameter comparable to the respective BSM
quantity. These assumptions lead to a recombining tree which has after n time steps n + 1
nodes only—instead of 2n nodes if the tree would not recombine. This allows for a high
number of time steps in the numerical implementation.

Assuming risk-neutral valuation holds, the following relationship can be derived:

St = e−rΔtEQ
t [St+Δt]

= e−rΔt(q ⋅ u ⋅ St + (1 − q) ⋅ d ⋅ St)

Against this background, the risk-neutral (or martingale) branch probability is

q = erΔt − d
u − d

This quantity is uniquely determined by the structure of the index level tree which implies
completeness of the CRR model. The value of a European call option C0 is then obtained by

5In a BSM model, positions in the underlying can only immunize against small movements in the
underlying. To hedge against volatility changes one needs a further financial instrument sensitive to such
changes, in general an option. Cf. Nandi and Waggoner (2000) for an intuitive introduction to delta-vega
hedging.
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TABLE 5.1 Valuation results from the CRR binomial algorithm for the European call option; upper
panel index level process, lower panel option value processa

Time t = 0 Δt 2Δt 3Δt T

St 100.00 110.52 122.14 134.99 149.18
90.48 100.00 110.52 122.14

81.87 90.48 100.00
74.08 81.87

67.03

Ct 9.97 15.92 24.61 36.23 49.18
3.32 6.25 11.76 22.14

0.00 0.00 0.00
0.00 0.00

0.00

aThe true value of the European put option from the BSM formula is 10.45.

discounting the final payoffs C(S, T) ≡ max[ST − K, 0] at t = T to t = 0:

C0 = e−rTEQ
0 [CT ]

The discounting can be done step-by-step and node-by-node backwards starting at t = T − Δt.
From an algorithmical point of view, one has to first generate the index level values,

then determine the final payoffs of the call option and finally discount them back. This is
what we will do in the following assuming the same model parameters as in the previous
BSM example. A quite dense Python implementation of the binomial valuation approach is
found in sub-section 5.6.4. Appendix A about Python discusses in sub-section A.2.2 several
implementation approaches to the CRR model to illustrate different algorithmic strategies.

Table 5.1 presents results for the binomial model with four time steps, i.e. five points in
time in total. From each node, the index can move upwards or downwards.6 For example,
starting at t = 0 with S0 = 100 the index can rise to 110.52 or can drop to 90.48. Arriving
with the evolution of S at T we can calculate the inner value of the option at this date
by C(S, T) ≡ max[ST − K, 0]. The algorithm proceeds by taking expectations under Q and
discounting backwards. For example, considering the highest node at time t = 3Δt the option
value is derived by

V3Δt = e−rΔt(q ⋅ 49.18 + (1 − q) ⋅ 22.14) = 36.23

where r = 0.05,Δt = 0.25 and q = 0.5378.
To illustrate the convergence of the CRR model value, consider Figure 5.8. In this figure,

an increasing number of time intervals obviously increases valuation accuracy. The figure
suggests that the CRR option value represents a lower bound to the BSM option value (i.e.
that it converges to the BSM value from below). However, as Figure 5.9 illustrates, the CRR

6To save space and computer memory, “upwards” actually means sidewards in the table as well as in the
arrays generated by the Python script.
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FIGURE 5.8 European call option values from the CRR model for increasing number of time
intervals M—step size of 20 intervals

F IGURE 5.9 European call option values from the CRR model for increasing number of time
intervals M—step size of 25 intervals
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option value might also oscillate around the BSM benchmark value given a different numerical
parametrization of the binomial model.

Obviously, the CRR model values converge quite well to the BSM value of 10.45. One
might wonder where the advantage of the CRR model lies compared to the BSM model. With
regard to standard European options there is hardly an advantage. If any, it is the simplicity
of the model and the ability to analyze the workings of the algorithm step by step and node
by node in a tree. In that sense, it is a good teaching tool, for instance. However, advantages
arise beyond standard European options: the CRR model can also handle options with early
exercise features, i.e. American or Bermudan options, as well as options with arbitrary payoffs
at time T. This is illustrated in Chapter 7 which analyzes American options.

5.5 CONCLUSIONS

This chapter deals with two of the benchmark models for options pricing, the Black-Scholes-
Merton (1973) continuous time model and the Cox-Ross-Rubinstein (1979) discrete time
binomial model.

All of the theory and the majority of the other models covered in this book will be about
some kind of enhancement relative to these benchmark models. For example, the Merton
(1976) model adds a jump component to the geometric Brownian motion of BSM while the
Heston (1993) model introduces a stochastic variance/volatility process.

In addition, when speaking of implied volatilities of option prices it is in general the
BSM model that implies the volatility given the quoted option prices and the other market
parameters.

5.6 PROOFS AND PYTHON SCRIPTS

5.6.1 I t ô ’s Lemma

Proposition 5 (Itô’s Lemma). Let f : R2 → R be a twice continuously differentiable function
and S be a diffusion

dSt = mtdt + vtdZt (5.15)

with Z a standard Brownian motion. Then for f (S, t) the marginal change in time is (omitting
time subscripts)

df (S, t) =
𝜕f

𝜕S
dS + 1

2
𝜕

2f

𝜕S2
v2dt +

𝜕f

𝜕t
dt (5.16)

Proof. First, a Taylor series expansion up to second order yields (suppressing dt2 terms and
other terms of equal or smaller order)

df (S, t) =
𝜕f

𝜕S
dS + 1

2
𝜕

2f

𝜕S2
dS2 +

𝜕f

𝜕t
dt

Second, note that dS2 = v2dt. Cf. Wilmott et al. (1995), pp. 25–31, for a discussion of this
simplified derivation and on the order of differential terms in the Taylor expansion.
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5.6.2 Script for BSM Opt ion Valuat ion

#

# Black-Scholes-Merton (1973) European Call & Put Valuation

# 05_com/BSM_option_valuation.py

#

# (c) Dr. Yves J. Hilpisch

# Derivatives Analytics with Python

#

import math

import numpy as np

import matplotlib as mpl

import matplotlib.pyplot as plt

mpl.rcParams['font.family'] = 'serif'

from scipy.integrate import quad

#

# Helper Functions

#

def dN(x):

''' Probability density function of standard normal random variable x.'''

return math.exp(-0.5 * x ** 2) / math.sqrt(2 * math.pi)

def N(d):

''' Cumulative density function of standard normal random variable x. '''

return quad(lambda x: dN(x), -20, d, limit=50)[0]

def d1f(St, K, t, T, r, sigma):

''' Black-Scholes-Merton d1 function.

Parameters see e.g. BSM_call_value function. '''

d1 = (math.log(St / K) + (r + 0.5 * sigma ** 2)

* (T - t)) / (sigma * math.sqrt(T - t))

return d1

#

# Valuation Functions

#

def BSM_call_value(St, K, t, T, r, sigma):

''' Calculates Black-Scholes-Merton European call option value.
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Parameters

==========

St: float

stock/index level at time t

K: float

strike price

t: float

valuation date

T: float

date of maturity/time-to-maturity if t = 0; T > t

r: float

constant, risk-less short rate

sigma: float

volatility

Returns

=======

call_value: float

European call present value at t

'''

d1 = d1f(St, K, t, T, r, sigma)

d2 = d1 - sigma * math.sqrt(T - t)

call_value = St * N(d1) - math.exp(-r * (T - t)) * K * N(d2)

return call_value

def BSM_put_value(St, K, t, T, r, sigma):

''' Calculates Black-Scholes-Merton European put option value.

Parameters

==========

St: float

stock/index level at time t

K: float

strike price

t: float

valuation date

T: float

date of maturity/time-to-maturity if t = 0; T > t

r: float

constant, risk-less short rate

sigma: float

volatility

Returns

=======

put_value: float
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European put present value at t

'''

put_value = BSM_call_value(St, K, t, T, r, sigma) \
- St + math.exp(-r * (T - t)) * K

return put_value

#

# Plotting European Option Values

#

def plot_values(function):

''' Plots European option values for different parameters c.p. '''

plt.figure(figsize=(10, 8.3))

points = 100

#

# Model Parameters

#

St = 100.0 # index level

K = 100.0 # option strike

t = 0.0 # valuation date

T = 1.0 # maturity date

r = 0.05 # risk-less short rate

sigma = 0.2 # volatility

# C(K) plot

plt.subplot(221)

klist = np.linspace(80, 120, points)

vlist = [function(St, K, t, T, r, sigma) for K in klist]

plt.plot(klist, vlist)

plt.grid()

plt.xlabel('strike $K$')

plt.ylabel('present value')

# C(T) plot

plt.subplot(222)

tlist = np.linspace(0.0001, 1, points)

vlist = [function(St, K, t, T, r, sigma) for T in tlist]

plt.plot(tlist, vlist)

plt.grid(True)

plt.xlabel('maturity $T$')

# C(r) plot

plt.subplot(223)

rlist = np.linspace(0, 0.1, points)
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vlist = [function(St, K, t, T, r, sigma) for r in rlist]

plt.plot(tlist, vlist)

plt.grid(True)

plt.xlabel('short rate $r$')

plt.ylabel('present value')

plt.axis('tight')

# C(sigma) plot

plt.subplot(224)

slist = np.linspace(0.01, 0.5, points)

vlist = [function(St, K, t, T, r, sigma) for sigma in slist]

plt.plot(slist, vlist)

plt.grid(True)

plt.xlabel('volatility $\sigma$')
plt.tight_layout()

5.6.3 Script for BSM Cal l Greeks

#

# Black-Scholes-Merton (1973) European Call Option Greeks

# 05_com/BSM_call_greeks.py

#

# (c) Dr. Yves J. Hilpisch

# Derivatives Analytics with Python

#

import math

import numpy as np

import matplotlib as mpl

import matplotlib.pyplot as plt

mpl.rcParams['font.family'] = 'serif'

import mpl_toolkits.mplot3d.axes3d as p3

from BSM_option_valuation import d1f, N, dN

#

# Functions for Greeks

#

def BSM_delta(St, K, t, T, r, sigma):

''' Black-Scholes-Merton DELTA of European call option.

Parameters

==========

St: float

stock/index level at time t
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K: float

strike price

t: float

valuation date

T: float

date of maturity/time-to-maturity if t = 0; T > t

r: float

constant, risk-less short rate

sigma: float

volatility

Returns

=======

delta: float

European call option DELTA

'''

d1 = d1f(St, K, t, T, r, sigma)

delta = N(d1)

return delta

def BSM_gamma(St, K, t, T, r, sigma):

''' Black-Scholes-Merton GAMMA of European call option.

Parameters

==========

St: float

stock/index level at time t

K: float

strike price

t: float

valuation date

T: float

date of maturity/time-to-maturity if t = 0; T > t

r: float

constant, risk-less short rate

sigma: float

volatility

Returns

=======

gamma: float

European call option GAMMA

'''

d1 = d1f(St, K, t, T, r, sigma)

gamma = dN(d1) / (St * sigma * math.sqrt(T - t))

return gamma
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def BSM_theta(St, K, t, T, r, sigma):

''' Black-Scholes-Merton THETA of European call option.

Parameters

==========

St: float

stock/index level at time t

K: float

strike price

t: float

valuation date

T: float

date of maturity/time-to-maturity if t = 0; T > t

r: float

constant, risk-less short rate

sigma: float

volatility

Returns

=======

theta: float

European call option THETA

'''

d1 = d1f(St, K, t, T, r, sigma)

d2 = d1 - sigma * math.sqrt(T - t)

theta = -(St * dN(d1) * sigma / (2 * math.sqrt(T - t))

+ r * K * math.exp(-r * (T - t)) * N(d2))

return theta

def BSM_rho(St, K, t, T, r, sigma):

''' Black-Scholes-Merton RHO of European call option.

Parameters

==========

St: float

stock/index level at time t

K: float

strike price

t: float

valuation date

T: float

date of maturity/time-to-maturity if t = 0; T > t

r: float

constant, risk-less short rate

sigma: float

volatility
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Returns

=======

rho: float

European call option RHO

'''

d1 = d1f(St, K, t, T, r, sigma)

d2 = d1 - sigma * math.sqrt(T - t)

rho = K * (T - t) * math.exp(-r * (T - t)) * N(d2)

return rho

def BSM_vega(St, K, t, T, r, sigma):

''' Black-Scholes-Merton VEGA of European call option.

Parameters

==========

St: float

stock/index level at time t

K: float

strike price

t: float

valuation date

T: float

date of maturity/time-to-maturity if t = 0; T > t

r: float

constant, risk-less short rate

sigma: float

volatility

Returns

=======

vega: float

European call option VEGA

'''

d1 = d1f(St, K, t, T, r, sigma)

vega = St * dN(d1) * math.sqrt(T - t)

return vega

#

# Plotting the Greeks

#

def plot_greeks(function, greek):

# Model Parameters

St = 100.0 # index level

K = 100.0 # option strike

t = 0.0 # valuation date

T = 1.0 # maturity date
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r = 0.05 # risk-less short rate

sigma = 0.2 # volatility

# Greek Calculations

tlist = np.linspace(0.01, 1, 25)

klist = np.linspace(80, 120, 25)

V = np.zeros((len(tlist), len(klist)), dtype=np.float)

for j in range(len(klist)):

for i in range(len(tlist)):

V[i, j] = function(St, klist[j], t, tlist[i], r, sigma)

# 3D Plotting

x, y = np.meshgrid(klist, tlist)

fig = plt.figure(figsize=(9, 5))

plot = p3.Axes3D(fig)

plot.plot_wireframe(x, y, V)

plot.set_xlabel('strike $K$')

plot.set_ylabel('maturity $T$')

plot.set_zlabel('%s(K, T)' % greek)

5.6.4 Script for CRR Opt ion Valuat ion

#

# Cox-Ross-Rubinstein Binomial Model

# European Option Valuation

# 05_com/CRR_option_calcuation.py

#

# (c) Dr. Yves J. Hilpisch

# Derivatives Analytics with Python

#

import math

import numpy as np

import matplotlib as mpl

import matplotlib.pyplot as plt

mpl.rcParams['font.family'] = 'serif'

from BSM_option_valuation import BSM_call_value

#

# Model Parameters

#

S0 = 100.0 # index level

K = 100.0 # option strike

T = 1.0 # maturity date

r = 0.05 # risk-less short rate

sigma = 0.2 # volatility
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# Valuation Function

def CRR_option_value(S0, K, T, r, sigma, otype, M=4):

''' Cox-Ross-Rubinstein European option valuation.

Parameters

==========

S0: float

stock/index level at time 0

K: float

strike price

T: float

date of maturity

r: float

constant, risk-less short rate

sigma: float

volatility

otype: string

either 'call' or 'put'

M: int

number of time intervals

'''

# Time Parameters

dt = T / M # length of time interval

df = math.exp(-r * dt) # discount per interval

# Binomial Parameters

u = math.exp(sigma * math.sqrt(dt)) # up movement

d = 1 / u # down movement

q = (math.exp(r * dt) - d) / (u - d) # martingale branch probability

# Array Initialization for Index Levels

mu = np.arange(M + 1)

mu = np.resize(mu, (M + 1, M + 1))

md = np.transpose(mu)

mu = u ** (mu - md)

md = d ** md

S = S0 * mu * md

# Inner Values

if otype == 'call':

V = np.maximum(S - K, 0) # inner values for European call option

else:

V = np.maximum(K - S, 0) # inner values for European put option

z = 0

for t in range(M - 1, -1, -1): # backwards iteration

V[0:M - z, t] = (q * V[0:M - z, t + 1]
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+ (1 - q) * V[1:M - z + 1, t + 1]) * df

z += 1

return V[0, 0]

def plot_convergence(mmin, mmax, step_size):

''' Plots the CRR option values for increasing number of time

intervals M against the Black-Scholes-Merton benchmark value.'''

BSM_benchmark = BSM_call_value(S0, K, 0, T, r, sigma)

m = xrange(mmin, mmax, step_size)

CRR_values = [CRR_option_value(S0, K, T, r, sigma, 'call', M) for M in m]

plt.figure(figsize=(9, 5))

plt.plot(m, CRR_values, label='CRR values')

plt.axhline(BSM_benchmark, color='r', ls='dashed', lw=1.5,

label='BSM benchmark')

plt.grid()

plt.xlabel('# of binomial steps $M$')

plt.ylabel('European call option value')

plt.legend(loc=4)

plt.xlim(0, mmax)



CHAPTER 6
Fourier-Based Option Pricing

6.1 INTRODUCTION

Chapter 4 introduces the elegant and general theory of arbitrage pricing by risk-neutral dis-
counting. Chapter 5 discusses the rather special setting of Black-Scholes-Merton and presents
the famous analytical valuation formula for European options. In the first case, the generality
of the approach is what is appealing. In the second case, the highly specific but very useful
valuation formula is the advantage.

The question is whether there is an approach to derive formulas as useful as the BSM one
in more general settings, thereby bridging the gap between generality of risk-neutral pricing
and the specificity of the BSM formula. Fortunately, there is an approach: Fourier-based option
pricing. This approach allows the use of semi-analytic valuation formulas for European options
whenever the characteristic function of the stochastic process representing the underlying is
known.

The Fourier approach, presented in this chapter, has three main advantages:

1. generality: as pointed out, the approach is applicable whenever the characteristic function
of the process driving uncertainty is known; and this is the case for the majority of
processes/models applied in practice

2. accuracy: the semi-analytic formulas can be evaluated numerically in such a way that a
high degree of accuracy is reached at little computational cost (e.g. compared to simulation
techniques)

3. speed: the formulas can in general be evaluated very fast such that 10s, 100s or even
1,000s of options can be valued per second

These three advantages make Fourier-based option pricing an indispensible tool in prac-
tice. In particular, when calibrating a model to option quotes or implied volatilities, there is
often no real alternative. In this chapter, the discussion focuses on European call options since
these are in general the instruments of choice for the calibration of financial models. However,
using put-call parity, put prices are only one step away.

There is a large body of literature dealing with Fourier-based pricing methods. For practical
purposes, the valuation formulas of Lewis (2001) and Carr and Madan (1999) are of high
importance. Duffie et al. (2000) provides an in-depth analysis of this method in the context

95
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of affine jump-diffusion models. Cheng and Scaillet (2007) generalizes the results of Duffie
et al. (2000) to the class of linear quadratic jump-diffusion models. Cherubini et al. (2009)
is a focused monograph on derivatives valuation via Fourier transforms. Schmelzele (2010)
is a recent survey article comparing a number of approaches in Fourier-based option pricing.
Cěrný (2004) discusses several fundamental aspects and shows how to apply this approach
to the binomial model. Generally, the introduction of this method to mathematical finance is
attributed to Heston (1993).

Section 6.2 reformulates the risk-neutral pricing problem and shows how Fourier-based
option pricing can help in solving it. Section 6.3 introduces the fundamental concepts of Fourier
transforms of functions and of characteristic functions. Section 6.4 presents the two popular
pricing approaches as developed by Lewis (cf. Lewis (2001)) and Carr-Madan (cf. Carr and
Madan (1999)). Full proofs are given due to the importance for later chapters. Section 6.5 treats
Fourier series and the Fast Fourier Transform algorithm as numerical methods for function
approximation and option valuation. Section 6.6 then applies the approaches presented in
a continuous and a discrete market model. The continuous theory is extensively used and
illustrated in later chapters. Therefore the focus lies on the application to the binomial model
of Cox-Ross-Rubinstein which allows a closer look into the inner workings of Fourier pricing
and allows a first assessment of the accuracy and speed of the approach.

6.2 THE PRIC ING PROBLEM

We consider a continuous market model

 = {(Ω, , F, P), T , (S, B)}

with the fixed filtered probability space (Ω, , F, P) and a final date 0 < T < ∞. Two assets
are traded in the economy, a (positive) stock index St∈[0,T] which is a semimartingale and
a risk-less bond B paying one unit of currency at T with time t value Bt ≡ e−r(T−t) where
r ≥ 0 represents the constant short rate. We assume no free lunches with vanishing risk such
that there is a P-equivalent martingale measure Q making the discounted index process a
martingale.

We then know that the arbitrage value of an attainable call option is

Ct = e−r(T−t)EQ
t (CT )

where CT ≡ max[ST − K, 0] for a strike K > 0. In integral from, setting t = 0, the call option
pricing reads

C0 = e−rT
∫

∞

0
CT (s)Q(ds)

= e−rT
∫

∞

0
CT (s)q(s)ds (6.1)

where q(s) is the risk-neutral probability density function (pdf) of ST . Unfortunately, the pdf
is quite often not known in closed form—whereas the characteristic function (CF) of ST is.
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The fundamental insight of Fourier-based option pricing is to replace both the pdf by the CF
and the call option payoff CT by its Fourier transform.

Therefore we will first define these fundamental terms and will then present two different
versions of the Fourier-based pricing approach.

6.3 FOURIER TRANSFORMS

In a continuous setting, we have the following definition:

Definition 40 (Fourier Transform). The Fourier transform of the integrable function f (x) is

f̂ (u) ≡
∫

∞

−∞
eiuxf (x)dx

with u either real or complex. eiux is called the phase factor.

By Fourier inversion

f (x) = 1
2𝜋 ∫

∞

−∞
e−iuxf̂ (u)du

for u real and

f (x) = 1
2𝜋 ∫

∞+iui

−∞+iui

e−iuxf̂ (u)du

for u complex with u = ur + iui where ur and ui denote the real and imaginary part of u,
respectively.

Denote the inner product of two complex-valued, square-integrable functions f , g by

⟨f , g⟩ ≡
∫

∞

−∞
f (x)g(x)dx

with ū denoting the complex conjugate of u, i.e. for u = ur + iui it holds ū = ur − iui.

Theorem 4 (Parseval’s Relation). f , g as before, then

⟨f , g⟩ = 1
2𝜋 ∫

∞

−∞
̂f (k)ĝ(k)dk

= 1
2𝜋

⟨f̂ , ĝ⟩ (6.2)
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Proof. By the inner product definition ⟨f , g⟩ ≡ ∫
∞
−∞ f (x)g(x)dx. By Fourier inversion f (x) =

1
2𝜋

∫
∞
−∞ e−iuxf̂ (k)dk. Inserting the latter in the former gives (cf. Schmelzele (2010))

⟨f , g⟩ =
∫

∞

−∞

1
2𝜋 ∫

∞

−∞
e−iuxf̂ (k)dkg(x)dx

= 1
2𝜋 ∫

∞

−∞
f̂ (k)

∫

∞

−∞
e−iuxg(x)dxdk

= 1
2𝜋 ∫

∞

−∞
f̂ (k)

∫

∞

−∞
eiuxg(x)dxdk

= 1
2𝜋 ∫

∞

−∞
f̂ (k)ĝ(k)dk

applying the Fubini-Tonello theorem where needed (cf. Bhattacharya and Waymire (2007),
app. A).

Definition 41 (Characteristic Function). Let a random variable X be distributed with pdf
q(x). The characteristic function q̂ of X is the Fourier transform of its pdf

q̂(u) ≡
∫

∞

−∞
eiuxq(x)dx = EQ(eiuX)

6.4 FOURIER-BASED OPTION PRIC ING

This section uses the tools developed so far to reproduce two popular, Fourier-based option
pricing approaches.

6.4.1 Lewis (2001) Approach

Fourier-based option pricing is an application of Parseval’s relation (6.2) to the risk-neutral
pricing equation (6.1). Consider a European call option with payoff CT ≡ max[es − K, 0]
where s ≡ log S.

Lemma 2 (Call Option Transform). For u = ur + iui with ui > 1, the Fourier transform of
CT is

ĈT (u) = − Kiu+1

u2 − iu

Proof. By direct integration

ĈT (u) =
∫

∞

−∞
eius max[es − K, 0]ds

=
∫

∞

logK
eius(es − K)ds
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=
∫

∞

logK
(e(iu+1)s − Keius)ds

=
[

e(iu+1)s

iu + 1
− K

eius

iu

]∞

logK

= − Kiu+1

u2 − iu

Fourier inversion gives

CT (s) = 1
2𝜋 ∫

∞+iui

−∞+iui

e−iusĈT (u)du

Now

C0 = e−rTEQ
0

(
CT

)

= e−rT

2𝜋
EQ

0

(

∫

∞+iui

−∞+iui

e−iusĈT (u)du

)

= e−rT

2𝜋 ∫

∞+iui

−∞+iui

EQ
0 (ei(−u)s)ĈT (u)du

= e−rT

2𝜋 ∫

∞+iui

−∞+iui

ĈT (u)q̂(−u)du

If St ≡ S0ert+Xt with Xt a Lévy process and eXt a martingale with X0 = 0, then q̂(−u) =
e−iuy

𝜑(−u) where 𝜑 is the characteristic function of XT . Here, y ≡ log S0 + rT . Now

C0 = e−rT

2𝜋 ∫

∞+iui

−∞+iui

e−iuyĈ(u)𝜑(−u)du

Defining k = log(S0∕K) + rT and using the derived call option payoff transform yields

C0 = −Ke−rT

2𝜋 ∫

∞+iui

−∞+iui

e−iuk
𝜑(−u)

du
u2 − ui

(6.3)

Proposition 6 (Lewis (2001)). Assuming ui ∈ (0, 1), the call option present value is

C0 = S0 −
Ke−rT

2𝜋 ∫

∞+iui

−∞+iui

e−iuk
𝜑(−u)

du
u2 − ui

(6.4)

Furthermore, setting ui = 0.5 gives

C0 = S0 −
√

S0Ke−rT∕2

𝜋 ∫

∞

0
Re[eizk

𝜑(z − i∕2)]
dz

z2 + 1∕4
(6.5)

where Re[x] denotes the real part of x.
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Proof. Equation (6.3) has two singularities at u = i and u = 0. Residue calculus gives for the
first

Res(i) = lim
u→i

(

(u − i)

(

−Ke−rT

2𝜋
e−iuk 𝜑(−u)

u(u − i)

))

= −Ke−rT

2𝜋
ek 𝜑(−i)

i

=
S0i

2𝜋

using ek = S0∕K ⋅ erT , 𝜑(−i) = 1 and i−1 = −i in the last equation. According to the residue
theorem (cf. Rudin (1970), ch. 13), the call option value equals the integral along ui minus
2𝜋iRes(i) = −S0 such that equation (6.4) follows immediately. Fixing ui = 0.5

C0 = S0 −
Ke−rT

2𝜋 ∫

∞

−∞
e−i(u+i∕2)k

𝜑(−(u + i∕2))
du

(u + i∕2)2 − (u + i∕2)i

Note that

e−i(u+i∕2)k = e−iukek∕2

with

ek∕2 = e(log(S0∕K)+rT)∕2

so that

Ke−rTek∕2 = e−rT∕2
√

S0K

Defining u = z + i∕2 gives

(z − i∕2)2 − (z − i∕2)i = z2 − 2zi + 1∕4

and

C0 = S0 −
√

S0Ke−rT∕2

𝜋 ∫

∞

−∞
e−izk

𝜑(−z − i∕2)
dz

z2 − 2zi + 1∕4

For f integrable and real-valued, Fourier inversion and symmetry of the characteristic function
around u = 0 yields (cf. Schmelzele (2010))

f (x) = 1
2𝜋 ∫

∞

−∞
e−iuxf̂ (u)du

= 1
2𝜋

Re
[

∫

0

−∞
e−iuxf̂ (u)du

]

+ 1
2𝜋 ∫

∞

0
Re[e−iuxf̂ (u)du]

= 1
2𝜋

Re
[

∫

∞

0
e−iuxf̂ (u)du

]

+ 1
2𝜋 ∫

∞

0
Re[e−iuxf̂ (u)du]
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= 1
2𝜋

Re
[

2
∫

∞

0
e−iuxf̂ (u)du

]

= 1
𝜋

Re
[

∫

∞

0
e−iuxf̂ (u)du

]

Using this result leads to

C0 = S0 −
√

S0Ke−rT∕2

𝜋 ∫

∞

0
Re[e−izk

𝜑(−z − i∕2)]
dz

z2 + 1∕4

By symmetry, the value of the integral remains unchanged if e−izk
𝜑(−z − i∕2) is replaced by

eizk
𝜑(z − i∕2) proving equation (6.5).

Valuation equation (6.5) can be evaluated by standard numerical integration methods, like
numerical quadrature.

6.4.2 Carr-Madan (1999) Approach

Define the payoff of a European call option with strike price K at maturity T as CT ≡

max[ST − K, 0] where K ≡ ek and ST ≡ es. The present value of the call option is

C0 ≡ e−rTEQ
0

(
max[es − ek, 0]

)

= e−rT
∫

∞

k
(es − ek)q(s)ds

where q(s) is the risk-neutral pdf of sT . To ensure integrability, define c0 ≡ e𝛼kC0 with 𝛼 > 0.
The Fourier transform of c0 is

𝜓(v) ≡
∫

∞

−∞
eivkc0dk

while the inverse transform is

C0 = e−𝛼k

𝜋 ∫

∞

0
e−ivk

𝜓(v)dv (6.6)

In - the-Money Opt ions

Proposition 7 (Carr-Madan (1999)). The call option value is given by (6.6) where

𝜓(v) = e−rT
𝜑(v − (𝛼 + 1)i)

𝛼
2 + 𝛼 − v2 + i(2𝛼 + 1)v

(6.7)

with 𝜑 as characteristic function 𝜑(u) ≡ EQ
0 (eiusT ) of sT ≡ log ST .
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Proof. Taking the Fourier transform, using risk-neutral valuation and applying the Fubini-
Tonello theorem yields (cf. Schmelzele (2010))

𝜓(v) =
∫

∞

−∞
eivkc0dk

=
∫

∞

−∞
eivke−rT

(

∫

∞

−∞
e𝛼k(es − ek)+q(s)ds

)

dk

=
∫

∞

−∞
eivke−rT

(

∫

∞

k
e𝛼k(es − ek)q(s)ds

)

dk

=
∫

∞

−∞
e−rTq(s)

(

∫

s

−∞
eivke𝛼k(es − ek)dk

)

ds

The inner integral allows direct integration

∫

s

−∞
eivke𝛼k(es − ek)dk = es

∫

s

−∞
e(iv+𝛼)kdk −

∫

s

−∞
e(iv+1+𝛼)kdk

= es

iv + 𝛼

[
e(iv+𝛼)k]s

−∞ − 1
iv + 1 + 𝛼

[
e(iv+1+𝛼)k]s

−∞

= e(iv+1+𝛼)s

iv + 𝛼

− e(iv+1+𝛼)s

iv + 1 + 𝛼

= e(iv+1+𝛼)s

(iv + 𝛼)(iv + 1 + 𝛼)

Rearranging e(iv+1+𝛼)s = ei(v−(𝛼+1))s, multiplying out the denominator and plugging back in
yields the desired Fourier transform

𝜓(v) = e−rT
𝜑(v − (𝛼 + 1)i)

𝛼
2 + 𝛼 − v2 + i(2𝛼 + 1)v

Consequently, knowledge of the characteristic function 𝜑 of the relevant process and
therewith of 𝜓 allows direct computation of C0 via equation (6.6).

Out-of - the-Money Opt ions For out-of-the-money options define z0 to be the current price of
a European put if k < log S0 and to be the price of a European call if k > log S0 where S0 ≡ 1.
In other words, consider time values only. After similar calculations and manipulations (see
Carr and Madan (1999)) the Fourier transform of z0 arises as

𝜍(v) = e−rT
(

1
1 + iv

− erT

iv
− 𝜑(v − i)

v2 − iv

)
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Due to the symmetry of z0 around k = 0, dampen the function by sinh(𝛼k) to get a new
transform

𝛾(v) =
∫

∞

−∞
eivk sinh(𝛼k)z0dk

= 𝜍(v − i𝛼) − 𝜍(v + i𝛼)
2

After inverting this new transform, the time value becomes

z0 = 1
sinh(𝛼k)

1
2𝜋 ∫

∞

−∞
e−ivk

𝛾(v)dv (6.8)

6.5 NUMERICAL EVALUATION

This section illustrates the Fourier-based pricing approach by the means of more simple
settings.

6.5.1 Fourier Series

We are now in a discrete setting.

Definition 42 (Fourier Series). A Fourier series is an infinite sum of the form

f (x) =
∞∑

n=0

(an cos nx + bn sin nx)

= a0 +
∞∑

n=1

(an cos nx + bn sin nx)

which is a 2𝜋-periodic function, i.e. f (x) = f (x + 2𝜋).

If f (x) is a known 2𝜋-periodic function, then the coefficients of the series are according
to the Euler formulas

a0 = 1
2𝜋 ∫

𝜋

−𝜋
f (x)dx

an = 1
𝜋 ∫

𝜋

−𝜋
f (x) cos nxdx

bn = 1
𝜋 ∫

𝜋

−𝜋
f (x) sin nxdx
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For an arbitrary interval [−L, L] , the formulas are

f (x) = a0 +
∞∑

n=1

(

an cos
(n𝜋

L
x
)

+ bn sin
(n𝜋

L
x
))

a0 = 1
2L ∫

L

−L
f (x)dx

an = 1
L ∫

L

−L
f (x) cos

(n𝜋
L

x
)

dx

bn = 1
L ∫

L

−L
f (x) sin

(n𝜋
L

x
)

dx

If u is complex with u = ur + iui then by Euler identity

eiux = eurx cos(urx) + ieurx sin(uix)

so that

f (x) =
∞∑

n=−∞
cnei n𝜋

L
x (6.9)

cn = 1
2L ∫

L

−L
f (x)e−i n𝜋

L
xdx (6.10)

In a sense, the complex Fourier series (6.9) is the discrete equivalent of a Fourier transform.
To see this, denote kn ≡

n𝜋
L

, ĉ(kn) ≡ cn and write

f (x) =
∞∑

n=−∞
ĉ(kn)eiknx

It holds Δ n𝜋
L

= 𝜋

L
Δn with Δn = 1. So L

𝜋

Δkn = L
𝜋

Δ n𝜋
L

= 1. Multiplying with this unity factor
gives

f (x) = L
𝜋

∞∑

n=−∞
ĉ(kn)eiknxΔkn

Now define ̂f (kn) ≡ L
𝜋

ĉ(kn) yielding

f (x) =
∞∑

n=−∞
f̂ (kn)eiknxΔkn

and

̂f (kn) = L
𝜋

1
2L ∫

L

−L
f (x)e−iknxdx
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using (6.10). Taking the limit L → ∞ and dropping the n subscript, the sum becomes an
integral yielding

f (x) =
∫

∞

−∞
f̂ (k)eikxdk

f̂ (k) = 1
2𝜋 ∫

∞

−∞
e−ikxf (x)dx

Changing the sign in the phase factor and multiplying f (x) by 2𝜋 thus dividing f̂ (x) by 2𝜋
leads to the Fourier transform pair as defined previously

f̂ (k) =
∫

∞

−∞
eikxf (x)dx

f (x) = 1
2𝜋 ∫

∞

−∞
e−ikxf̂ (k)dk

A simple numerical example shall illustrate how Fourier series can approximate functions.

Example 2 (Fourier Series). Consider the function f (x) = |x| over the interval [−𝜋,𝜋]. This
function can be approximated by the Fourier series

f (x) = 𝜋

2
+

∞∑

n=1

[
2((−1)n − 1)

𝜋n2

]

cos nx

Sub-section 6.8.2 contains a Python script implementing and plotting the formula. Figure 6.1
shows the output for series of order 1 and 5—the better approximation of the higher order
series is obvious.

6.5.2 Fast Fourier Transform

Fast Fourier Transform (FFT) is an efficient algorithm, dating back to Cooley (1965), to
compute sums of type (cf. Carr and Madan (1999))

w(u) =
N∑

j=1

e−i 2𝜋
N

(j−1)(u−1)x(j), u = 1,… , N (6.11)

Defining vj ≡ 𝜂(j − 1) the integral (6.6) can be numerically approximated by the sum

C0 ≈ e−𝛼k

𝜋

N∑

j=1

e−ivjk
𝜓(vj)𝜂
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F IGURE 6.1 Fourier series approximation of function f (x) = |x| of order 1 (left) and of order 5
(right)

Let 𝜖 be a regular spacing parameter and consider the sequence of log-strikes ku =
−b + 𝜖(u − 1) with u = 1,… , N. With this spacing, the FFT algorithm returns N values for
log-strikes ranging from −b to b with b = 0.5N𝜖. Then

C0 ≈ e−𝛼ku

𝜋

N∑

j=1

e−ivj(−b+𝜖(u−1))
𝜓(vj)𝜂, u = 1,… , N

Substituting vj yields

C0 ≈ e−𝛼ku

𝜋

N∑

j=1

e−i𝜖𝜂(j−1)(u−1)eibvj
𝜓(vj)𝜂, u = 1,… , N

Realizing that 𝜖𝜂 = 2𝜋
N

which implies that a small 𝜂 increases 𝜖 and vice versa, introduce
weightings according to Simpson’s rule such that the call approximation finally takes on the
form

C0 ≈ e−𝛼ku

𝜋

N∑

j=1

e−i 2𝜋
N

(j−1)(u−1)eibvj
𝜓(vj)

𝜂

3
(3 + (−1)j − ⋄j−1), u = 1,… , N (6.12)

with ⋄n being the Kronecker delta function which takes value one for n = 0 and zero otherwise.
Equation (6.12) has a form similar enough to equation (6.11) to directly apply the FFT
algorithm to it.
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6.6 APPLICATIONS

This section applies the methods introduced in this chapter to different continuous and discrete
market models.

6.6.1 Black-Scholes-Merton (1973) Model

To illustrate the usefulness of the transform method and the accuracy of formula (6.5) this
example applies them alongside the FFT algorithm to the BSM model (the next sub-section
and Chapter 8 do it for the Merton (1976) model and Chapter 9 for the Bakshi-Cao-Chen
(1997) model). The characteristic function of the BSM model (without dividends) is given by

𝜑
BSM
0 (u, T) = e((r−𝜎2∕2)iu−𝜎2∕2u2)T

The Python script in sub-section 6.8.1 implements this characteristic function and formula
(11.12), which is a variant of (6.5), for a constant short rate r. In addition, it provides a FFT
algorithm implementation for BSM and as a benchmark the standard analytical call option
formula without dividends (cf. Wilmott et al. (1995), p. 48, or Chapter 5 of this book)

C0 = S0 ⋅ N(d1) − e−rT ⋅ K ⋅ N(d2)

d1 ≡

log S0
K
+
(
r + 𝜎

2

2

)
T

𝜎

√
T

d2 ≡ d1 − 𝜎

√
T

where N is the cumulative distribution function of a standard normal random variable. Fig-
ure 6.2 compares the accuracy of formula (6.5) against the analytical values for a range of
strikes. Figure 6.3 does the same for FFT values where the same grid spacing is used as in
CM99. While formula (6.5) is accurate up to 12 digits, the FFT approach is accurate “only”
up to five digits (with this particular parametrization). In the calibration of the BCC97 model,
we use formula (6.5) because it is more accurate.

In terms of speed one can say the following. Based on 5,000 valuations of the same call
(with original CM99 parameters for the FFT routine), the analytical formula is the benchmark
with a normalized time of 1 (which translates to 0.898 seconds on the author’s notebook). FFT
is slower by a factor of 7.9 and numerical integration by a factor of 15.1 such that FFT is about
1.9 times faster than numerical integration.

In the example, it is not taken into account that the FFT algorithm may in principle deliver
call values for a number of different strikes with a single valuation run. However, the number
of application areas for this particular feature of FFT seems sometimes a bit limited. Kahl
(2007), for example, comments in this regard:

“…when calibrating a model to quoted option prices one typically has quotes for just
a couple of strikes and maturities. Using the FFT would require a uniform grid in the
log-strike direction … The strikes of the options to which we calibrate will typically
not lie on this grid, so that an additional source of error is introduced when using the
FFT: interpolation error.”
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F IGURE 6.2 Valuation accuracy of Lewis’ integral approach in comparison to BSM analytical
formula; parameter values are S0 = 100, T = 1.0, r = 0.05, 𝜎 = 0.2

Although it is quite nice to have an alternative pricing mechanism for BSM, the benefit
is only marginal in this setup. This is different when considering more complex models, like
Merton (1976) or Bakshi-Cao-Chen (1997). For these models, knowledge of the characteristic
function makes European call option pricing as simple as in the BSM case.

6.6.2 Merton (1976) Model

Consider the continuous market model M76 where the risk-neutral stock index dynamics
are given by the jump diffusion of Merton (1976)

dSt = (r − rJ)Stdt + 𝜎StdZt + JtStdNt (6.13)

r is the constant short rate, 𝜎 the constant volatility, Zt a standard Brownian motion, Nt a
Poisson process with intensity 𝜆. Furthermore, Jt is the jump at date t with distribution

log(1 + Jt) ≈ N
(

log(1 + 𝜇J) − 𝛿
2

2
, 𝛿2

)
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FIGURE 6.3 Valuation accuracy of CM99 FFT approach in comparison to BSM analytical formula;
parameter values are S0 = 100, T = 1.0, r = 0.05, 𝜎 = 0.2, N = 4, 096, 𝜖 = 150−1

where N is the cumulative distribution function of a standardized normal random variable.
Finally

rJ ≡ 𝜆 ⋅ (e𝜇J+𝛿2∕2 − 1)

The characteristic function of log ST given stock index dynamics (6.13) is a well-known
function

𝜑
M76(u) = exp

((

iu𝜔 − u2
𝜎

2

2
+ 𝜆(eiu𝜇J−u2

𝛿
2∕2 − 1)

)

T

)

(6.14)

where the risk-neutral drift term 𝜔 takes on the form

𝜔 = r − 𝜎
2

2
− 𝜆(e𝜇J+𝛿2∕2 − 1) (6.15)

Valuation of a European call option then boils down to inserting (6.14)/(6.15) in either (6.5)
and using an appropriate numerical integration scheme or (6.6)–(6.8) and applying FFT.
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6.6.3 Discrete Market Model

Consider the discrete market model of Cox-Ross-Rubinstein with binomial representation of
the index dynamics. Although not further needed, the application of Fourier-based option
pricing to this type of model is rather instructive since it allows a “look behind the scenes”.
The exposition follows Cěrný (2004) rather closely.

Before attacking the valuation problem itself, some more notions have to be introduced.

Definition 43 (Root of Unity). The nth root of unity is

zn ≡ e−i 2𝜋
n

Note that (z5)0 = (z5)5 = (z5)10 = (z5)15 = … (anticlockwise rotation) and (z5)0 =
(z5)−5 = (z5)−10 = (z5)−15 = … (clockwise rotation). We have

(zn)1 + (zn)2 + ...(zn)n−1 = 0

We also have

(
zk

n

)1 +
(
zk

n

)2 +⋯ +
(
zk

n

)n−1 = 0, k ≠ 0, n,−n

and

(
zk

n

)1 +
(
zk

n

)2 +⋯ +
(
zk

n

)n−1 = n, k = 0, n,−n

Given a sequence of numbers a = (a0, a1,… , an−1), its reverse order is given by rev(a) =
(a0, an−1,… , a1). Given the sequence

z(k) =
((

zk
n

)0
,
(
zk

n

)1
,… ,

(
zk

n

)n−1)

it can be shown that rev(z(−k)) = z(k).
Figure 6.4 shows two series of roots of unity plotted as “spokes of a wheel”, for n = 5

and n = 30. The Python script in sub-section 6.8.3 generates such plots.
Now, let a sequence a = (a0, a1,… , an−1) of n (complex) numbers be given.

Definition 44 (Discrete Fourier Transform). The discrete Fourier transform (DFT) of a is
the sequence b = (b0, b1,… , bn−1) where

bk = a0

(
zk

n

)0 + a1

(
zk

n

)1 +⋯ + an−1

(
zk

n

)n−1

=
n−1∑

j=0

aj

(
zk

n

)j

We write  (a) = b.
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FIGURE 6.4 Series with roots of unity for n = 5 and n = 30 plotted in the imaginary plane

The discrete inverse Fourier transform of b is then the sequence a = (a0, a1,… , an−1)
where

al =
(

b0

(
z−l

n

)0 + b1

(
z−l

n

)1 +⋯ + bn−1

(
z−l

n

)n−1
)

=
n−1∑

k=0

bk

(
zk

n

)−l

We write a = 
−1(b).

Consider next two sequences a = (a0, a1,… , an−1) and b = (b0, b1,… , bn−1). The con-
volution c of the two sequences is denoted by c = a◦b and given element-wise by

cj =
n−1∑

k=0

aj−k+n⋅1{j−k<0}
⋅ bk

The script in sub-section 6.8.4 implements this algorithm for two one-dimensional vectors.

Example 3 (Convolution). Assume n = 4, then c = a◦b = (c0, c1, c2, c3) is given by

c0 = a0b0 + a3b1 + a2b2 + a1b3

c1 = a1b0 + a0b1 + a3b2 + a2b3

c2 = a2b0 + a1b1 + a0b2 + a3b3

c3 = a3b0 + a2b1 + a1b2 + a0b3
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We can apply convolutions to value European call options. To this end, remember the
option pricing example of section 5.4 and revisit in particular Table 5.1. At time t = 3Δt we
have

C3Δt =

⎛
⎜
⎜
⎜
⎜
⎝

36.23
11.76

0
0
0

⎞
⎟
⎟
⎟
⎟
⎠

Now define a probability vector by

qv =

⎛
⎜
⎜
⎜
⎜
⎝

0.5034
0.4966

0
0
0

⎞
⎟
⎟
⎟
⎟
⎠

We can now write

C2Δt = e−rΔt ⋅ C3Δt◦rev(qv)

and so forth until we reach C0. In Python, this takes on the form as presented in sub-section
6.8.6. The value the script derives equals exactly the one as reported in Table 5.1, namely
9.97. The Python script in sub-section 6.8.7 implements the algorithm in a general fashion
(the script uses the parameters stored in the script of sub-section 6.8.5).

The next step is to use the DFT to value a European call option in the model. Consider
two sequences a = (a0, a1,… , an−1) and b = (b0, b1,… , bn−1). It holds

 (a◦b) =  (a) ⋅  (b)


−1(a◦b) = n ⋅  −1(a) ⋅  −1(b)

We now know that the present value of the call option is

C0 = e−rT (CT◦ rev(qv)◦rev(qv)◦...◦rev(qv)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

T∕Δt times

)

Fourier inverting the last equation gives


−1(C0) = e−rT


−1(CT )((T∕Δt + 1) ⋅  −1(rev(qv)))T∕Δt

(T∕Δt + 1) is the dimension of CT . Taking the DFT again, we get

C0 =  (e−rT


−1(CT )((T∕Δt + 1) ⋅  −1(rev(qv)))T∕Δt)
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With (T∕Δt + 1) ⋅  −1(rev(qv)) =  (qv) one obtains

C0 =  (e−rT


−1(CT ) (qv)T∕Δt)

We also have

C0 = 
−1(e−rT

 (CT ) (rev(qv))T∕Δn)

The Python script in sub-section 6.8.8 implements three alternative formulas relying on
DFT pricing in the binomial model. Equipped with these formulas we can now test both
accuracy and speed of the approach. The BSM benchmark value for the example call option
is 10.4506.

The DFT approach delivers the following results for 250 valuations including index level
generations (cf. the script in sub-section 6.8.9). This accuracy is reached with M = 5000 time
steps.

1 In [3]: run call_fft_speed.py

2 Value of European option is 10.4502

3 Number of Valuations 250

4 Duration in Seconds 11.1037

5 Time per Option in Seconds 0.0444

6

7 In [4]:

Reducing the number of time steps to M = 500, and thereby sacrificing a bit of accuracy,
yields these results for 250 valuations:

1 In [4]: run call_fft_speed.py

2 Value of European option is 10.4466

3 Number of Valuations 250

4 Duration in Seconds 0.1865

5 Time per Option in Seconds 0.0007

6

7 In [5]:

Reducing the number of time steps by a factor of 10 reduces the time by a factor of more
than 60. At this level of accuracy, one valuation takes less than 1 millisecond such that more
than 1,000 options can be valued per second. These numbers are of course dependent on the
system (hardware, operating system, etc.) used. However, they give a feeling for the trade-off
between accuracy and speed. And they give a feeling for the advantage of Fourier-based option
pricing.
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6.7 CONCLUSIONS

Fourier-based option pricing combines generality of the risk-neutral valuation approach with
the convenience of having a closed-form pricing formula as in the BSM setup. The two
Fourier approaches presented in this chapter are widely applicable and quite fast when it
comes to numerical valuations. In general, this is what makes them an indispensable tool
for practical option pricing applications. Part III of the book will breathe life into these
statements.

6.8 PYTHON SCRIPTS

6.8.1 BSM Cal l Va luat ion via Fourier Approach

#

# Valuation of European Call Options in BSM Model

# Comparison of Analytical, int_valueegral and FFT Approach

# 11_cal/BSM_option_valuation_FOU.py

#

# (c) Dr. Yves J. Hilpisch

# Derivatives Analytics with Python

#

import math

import numpy as np

from numpy.fft import fft

from scipy.integrate import quad

from scipy import stats

import matplotlib.pyplot as plt

import matplotlib as mpl

mpl.rcParams['font.family'] = 'serif'

#

# Model Parameters

#

S0 = 100.00 # initial index level

K = 100.00 # strike level

T = 1. # call option maturity

r = 0.05 # constant short rate

sigma = 0.2 # constant volatility of diffusion

#

# Valuation by int_valueegration

#

### Analytical Formula
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def BSM_call_value(S0, K, T, r, sigma):

''' Valuation of European call option in BSM Model.

--> Analytical Formula.

Parameters

==========
S0: float

initial stock/index level

K: float

strike price

T: float

time-to-maturity (for t=0)
r: float

constant risk-free short rate

sigma: float

volatility factor in diffusion term

Returns

=======
call_value: float

European call option present value

'''

d1 = (np.log(S0 / K) + (r + 0.5 * sigma ** 2) * T) \
/ (sigma * np.sqrt(T))

d2 = (np.log(S0 / K) + (r - 0.5 * sigma ** 2) * T) \
/ (sigma * np.sqrt(T))

BS_C = (S0 * stats.norm.cdf(d1, 0.0, 1.0)

- K * np.exp(-r * T) * stats.norm.cdf(d2, 0.0, 1.0))

return BS_C

#

# Fourier Transform with Numerical int_valueegration

#

def BSM_call_value_INT(S0, K, T, r, sigma):

''' Valuation of European call option in BSM model via Lewis (2001)

--> Fourier-based approach (integral).

Parameters

==========
S0: float

initial stock/index level
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K: float

strike price

T: float

time-to-maturity (for t=0)
r: float

constant risk-free short rate

sigma: float

volatility factor in diffusion term

Returns

=======
call_value: float

European call option present value

'''

int_value = quad(lambda u:

BSM_integral_function(u, S0, K, T, r, sigma), 0, 100)[0]

call_value = max(0, S0 - np.exp(-r * T) * np.sqrt(S0 * K)

/ np.pi * int_value)

return call_value

def BSM_integral_function(u, S0, K, T, r, sigma):

''' Valuation of European call option in BSM model via Lewis (2001)

--> Fourier-based approach: integral function. '''

cf_value = BSM_characteristic_function(u - 1j * 0.5, 0.0, T, r, sigma)

int_value = 1 / (u ** 2 + 0.25) \
* (np.exp(1j * u * np.log(S0 / K)) * cf_value).real

return int_value

def BSM_characteristic_function(v, x0, T, r, sigma):

''' Valuation of European call option in BSM model via

Lewis (2001) and Carr-Madan (1999)

--> Fourier-based approach: characteristic function. '''

cf_value = np.exp(((x0 / T + r - 0.5 * sigma ** 2) * 1j * v

- 0.5 * sigma ** 2 * v ** 2) * T)

return cf_value

#

# Fourier Transform with FFT

#

def BSM_call_value_FFT(S0, K, T, r, sigma):

''' Valuation of European call option in BSM model via Lewis (2001)

--> Fourier-based approach (integral).
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Parameters

==========
S0: float

initial stock/index level

K: float

strike price

T: float

time-to-maturity (for t=0)
r: float

constant risk-free short rate

sigma: float

volatility factor in diffusion term

Returns

=======
call_value: float

European call option present value

'''

k = np.log(K / S0)

x0 = np.log(S0 / S0)

g = 1 # factor to increase accuracy

N = g * 4096

eps = (g * 150.) ** -1

eta = 2 * np.pi / (N * eps)

b = 0.5 * N * eps - k

u = np.arange(1, N + 1, 1)

vo = eta * (u - 1)

# Modifications to Ensure int_valueegrability

if S0 >= 0.95 * K: # ITM case

alpha = 1.5

v = vo - (alpha + 1) * 1j

modcharFunc = np.exp(-r * T) * (BSM_characteristic_function(

v, x0, T, r, sigma) /

(alpha ** 2 + alpha

- vo ** 2 + 1j * (2 * alpha + 1) * vo))

else: # OTM case

alpha = 1.1

v = (vo - 1j * alpha) - 1j

modcharFunc1 = np.exp(-r * T) * (1 / (1 + 1j * (vo - 1j * alpha))

- np.exp(r * T) / (1j * (vo - 1j * alpha))

- BSM_characteristic_function(

v, x0, T, r, sigma) /

((vo - 1j * alpha) ** 2

- 1j * (vo - 1j * alpha)))

v = (vo + 1j * alpha) - 1j
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modcharFunc2 = np.exp(-r * T) * (1 / (1 + 1j * (vo + 1j * alpha))

- np.exp(r * T) / (1j * (vo + 1j * alpha))

- BSM_characteristic_function(

v, x0, T, r, sigma) /

((vo + 1j * alpha) ** 2

- 1j * (vo + 1j * alpha)))

# Numerical FFT Routine

delt = np.zeros(N, dtype=np.float)
delt[0] = 1

j = np.arange(1, N + 1, 1)

SimpsonW = (3 + (-1) ** j - delt) / 3

if S0 >= 0.95 * K:

FFTFunc = np.exp(1j * b * vo) * modcharFunc * eta * SimpsonW

payoff = (fft(FFTFunc)).real

CallValueM = np.exp(-alpha * k) / np.pi * payoff

else:

FFTFunc = (np.exp(1j * b * vo)

* (modcharFunc1 - modcharFunc2)

* 0.5 * eta * SimpsonW)

payoff = (fft(FFTFunc)).real

CallValueM = payoff / (np.sinh(alpha * k) * np.pi)

pos = int((k + b) / eps)

CallValue = CallValueM[pos] * S0

# klist = np.exp((np.arange(0, N, 1) - 1) * eps - b) * S0

return CallValue #, klist[pos - 50:pos + 50]

def plot_val_differences(vtype='int'):
k_list = np.linspace(S0 * 0.6, S0 * 1.4, 50)

ana_values = BSM_call_value(S0, k_list, T, r, sigma)

plt.figure(figsize=(8, 6))

plt.subplot(311)

plt.plot(k_list, ana_values, 'b', label='analytical', lw=1.5)
if vtype == 'int':

int_values = np.array([BSM_call_value_INT(S0, K, T, r, sigma)

for K in k_list])

plt.plot(k_list, int_values, 'r-.', label='Fourier (integral)',

lw=1.5)
diffs = int_values - ana_values

rdiffs = (int_values - ana_values) / ana_values

else:

fft_values = np.array([BSM_call_value_FFT(S0, K, T, r, sigma)

for K in k_list])

plt.plot(k_list, fft_values, 'r-.', label='Fourier (FFT)', lw=1.5)
diffs = fft_values - ana_values

rdiffs = (fft_values - ana_values) / ana_values

plt.legend()

plt.grid()
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plt.subplot(312)

plt.plot(k_list, diffs, 'g', label='abs. difference', lw=1.5)
plt.legend(loc=0)
plt.grid()

plt.subplot(313)

plt.plot(k_list, rdiffs, 'r', label='rel. difference', lw=1.5)
plt.legend(loc=0)
plt.xlabel('strike')

plt.grid()

plt.tight_layout()

6.8.2 Fourier Series

#

# Fourier Series for f(x) = abs(x) for -pi <= x <= pi

# 06_fou/Fourier_series.py

#

# (c) Dr. Yves J. Hilpisch

# Derivatives Analytics with Python

#

import numpy as np

import matplotlib.pyplot as plt

#

# Fourier series function

#

def fourier_series(x, n):

''' Generate Fourier Series from vector x for f(x) = abs(x)

of order n.

Parameters

==========
x: float or array of floats

input numbers

n: int

order of Fourier series

Returns

=======
fourier_values : float or array of floats

numbers according to Fourier series approximation

'''

fourier_values = np.pi / 2
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for i in range(1, n + 1):

fourier_values += ((2 * ((-1) ** i - 1))

/ (np.pi * i ** 2) * np.cos(i * x))

return fourier_values

def plot_fourier_series():

# Data Generation

x = np.linspace(-np.pi, np.pi, 100)

y1 = fourier_series(x, 1)

y2 = fourier_series(x, 5)

# Data Plotting

plt.figure(figsize=(10, 5))

plt.subplot(121)

plt.plot(x, abs(x), 'b', label='$f(x) = |x|$')

plt.plot(x, y1, 'r-.', lw=3.0, label='Fourier series $n=1$')
plt.grid()

plt.legend(loc=9)
plt.subplot(122)

plt.plot(x, abs(x), 'b', label='$f(x) = |x|$')

plt.plot(x, y2, 'r-.', lw=3.0, label='Fourier series $n=5$')
plt.grid()

plt.legend(loc=9)

6.8.3 Roots of Unity

#

# Plotting Spokes and Points on a Circle

# with Complex Numbers

# 06_fou/roots_of_unity.py

#

# (c) Dr. Yves J. Hilpisch

# Derivatives Analytics with Python

#

import numpy as np

import matplotlib.pyplot as plt

def generate_subplot(n):

y = np.exp(1j * 2 * np.pi / n) ** np.arange(1, n + 1)

for l in range(n):

plt.plot(y[l].real, y[l].imag, 'ro')

plt.plot((0, y[l].real), (0.0, y[l].imag), 'b')

plt.axis([-1.1, 1.1, -1.1, 1.1])

plt.xlabel('$n=%s$' % n)

plt.grid()
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def generate_plot():

plt.figure(figsize=(10, 7))

# first sub-plot for n=5
plt.subplot(121)

generate_subplot(n=5)

# second sub-plot for n=30
plt.subplot(122)

generate_subplot(n=30)

plt.subplots_adjust(left=0.05, bottom=0.2, top=0.8, right=1.0)

6.8.4 Convolut ion

#

# Circular convolution of two 1-dim vectors

# 06_fou/convolution.py

#

# (c) Dr. Yves J. Hilpisch

# Derivatives Analytics with Python

#

import numpy as np

#

# Function Definitions

#

def revpy(a):

''' Reversing the order of the vector's numbers (for loop). '''

a = np.array(a)

n = len(a)

c = np.zeros(n, dtype=np.float)
c[0] = a[0]

for j in range(1, n):

c[j] = a[n - j]

return c

def revnp(a):

''' Reversing the order of the vector's numbers (NumPy version). '''

b = a.copy()

b[1:] = b[1:][::-1]

return b
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def convolution(a, b):

''' Convolution of two vectors. '''

if len(a) != len(b):

raise ValueError(''Lengths of vectors do not match.'')

n = len(a)

c = np.zeros(n, dtype=np.float)
for j in range(n):

s = 0

for k in range(n):

if j - k >= 0:

s += a[j - k] * b[k]

else:

s += a[j - k + n] * b[k]

c[j] = s

return c

6.8.5 Module with Parameters

#

# Model Parameters for European Call Option

# in Binomial Model

# 06_fou/parameters.py

#

# (c) Dr. Yves J. Hilpisch

# Derivatives Analytics with Python

#

from math import exp, sqrt

# Model and Option Parameters

S0 = 100.0 # index level

K = 100.0 # option strike

T = 1.0 # maturity date

r = 0.05 # risk-less short rate

sigma = 0.2 # volatility

def get_binomial_parameters(M=100):
# Time Parameters

dt = T / M # length of time interval

df = exp(-r * dt) # discount per interval

# Binomial Parameters

u = exp(sigma * sqrt(dt)) # up movement

d = 1 / u # down movement

q = (exp(r * dt) - d) / (u - d) # martingale branch probability

return dt, df, u, d, q
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6.8.6 Cal l Va lue by Convolut ion

#

# Call Option Pricing with Circular Convolution (Simple)

# 06_fou/call_convolution.py

#

# (c) Dr. Yves J. Hilpisch

# Derivatives Analytics with Python

#

import math

import numpy as np

from convolution import revnp, convolution

# Parameter Definitions

M = 4 # number of time steps

dt = 1.0 / M # length of time interval

r = 0.05 # constant short rate

C = [49.18246976, 22.14027582, 0, 0, 0] # call payoff at maturity

q = 0.537808372 # martingale probability

qv = np.array([q, 1 - q, 0, 0, 0]) # probabilitiy vector filled with zeros

# Calculation

V = np.zeros((M + 1, M + 1), dtype=np.float)
V[M] = C

for t in range(M - 1, -1, -1):

V[t] = convolution(V[t + 1], revnp(qv)) * math.exp(-r * dt)

print "Value of the Call Option %8.3f" % V[0, 0]

6.8.7 Opt ion Pric ing by Convolut ion

#

# Call Option Pricing with Circular Convolution (General)

# 06_fou/call_convolution_general.py

#

# (c) Dr. Yves J. Hilpisch

# Derivatives Analytics with Python

#

import numpy as np

from convolution import revnp, convolution

from parameters import *
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# Parameter Adjustments

M = 3 # number of time steps

dt, df, u, d, q = get_binomial_parameters(M)

# Array Generation for Stock Prices

mu = np.arange(M + 1)

mu = np.resize(mu, (M + 1, M + 1))

md = np.transpose(mu)

mu = u ** (mu - md)

md = d ** md

S = S0 * mu * md

# Valuation

V = np.maximum(S - K, 0)

qv = np.zeros((M + 1), dtype=np.float)
qv[0] = q

qv[1] = 1 - q

for t in range(M - 1, -1, -1):

V[:, t] = convolution(V[:, t + 1], revnp(qv)) * df

print "Value of the Call Option %8.3f" % V[0, 0]

6.8.8 Opt ion Pric ing by DFT

#

# Call Option Pricing with Discrete Fourier Transforms (DFT/FFT)

# 06_fou/call_fft_pricing.py

#

# (c) Dr. Yves J. Hilpisch

# Derivatives Analytics with Python

#

import math

import numpy as np

from numpy.fft import fft, ifft

from convolution import revnp

from parameters import *

# Parameter Adjustments

M = 3 # number of time steps

dt, df, u, d, q = get_binomial_parameters(M)

# Array Generation for Stock Prices

mu = np.arange(M + 1)

mu = np.resize(mu, (M + 1, M + 1))

md = np.transpose(mu)
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mu = u ** (mu - md)

md = d ** md

S = S0 * mu * md

# Valuation by fft

CT = np.maximum(S[:, -1] - K, 0)

qv = np.zeros(M + 1, dtype=np.float)
qv[0] = q

qv[1] = 1 - q

C0_a = fft(math.exp(-r * T) * ifft(CT) * ((M + 1) * ifft(revnp(qv))) ** M)

C0_b = fft(math.exp(-r * T) * ifft(CT) * fft(qv) ** M)

C0_c = ifft(math.exp(-r * T) * fft(CT) * fft(revnp(qv)) ** M)

# Results Output

print "Value of European option is %8.3f" % np.real(C0_a[0])

print "Value of European option is %8.3f" % np.real(C0_b[0])

print "Value of European option is %8.3f" % np.real(C0_c[0])

6.8.9 Speed Test of DFT

#

# Call Option Pricing with DFT/FFT Speed Test

# 06_fou/call_fft_speed.py

#

# (c) Dr. Yves J. Hilpisch

# Derivatives Analytics with Python

#

import math

import numpy as np

from numpy.fft import fft, ifft

from convolution import revnp

from parameters import *

def call_fft_value(M):

# Parameter Adjustments

dt, df, u, d, q = get_binomial_parameters(M)

# Array Generation for Stock Prices

mu = np.arange(M + 1)

mu = np.resize(mu, (M + 1, M + 1))

md = np.transpose(mu)

mu = u ** (mu - md)

md = d ** md

S = S0 * mu * md
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# Valuation by FFT

CT = np.maximum(S[:, -1] - K, 0)

qv = np.zeros(M + 1, dtype=np.float)
qv[0] = q

qv[1] = 1 - q

C0 = fft(math.exp(-r * T) * ifft(CT) * fft(qv) ** M)



CHAPTER 7
Valuation of American Options

by Simulation

7.1 INTRODUCTION

Monte Carlo simulation (MCS) is a flexible and powerful numerical method to value financial
derivatives of any kind (cf. Glasserman (2004)). As a forward evolving technique, it is per se not
suited to address the valuation of American or Bermudan options which are valued in general
by backwards induction (cf. Kohler (2009)). However, Longstaff and Schwartz (2001) provide
a numerically efficient method to solve this problem by what they call Least-Squares Monte
Carlo (LSM).1 Their approach approximates continuation values for American options in
backwards steps by an ordinary least-squares regression. Equipped with such approximations,
the option is exercised if the approximate continuation value is lower than the value of
immediate exercise. Otherwise it is not exercised. The LSM leads to a lower bound for the
option’s value since the exercise decision is in any case sub-optimal (cf. Longstaff and Schwartz
(2001)).

Haugh and Kogan (2004), among others, propose a dual formulation of the valuation
problem for an American option which finally leads to a MCS estimator that represents an
upper bound to the option’s value. In some situations, it is very helpful to have an upper bound
in addition to a lower bound since the LSM does not allow to assess “how much too low the
value estimate is.” Then, in the absence of alternative benchmarks, the accuracy of the LSM
estimator cannot be judged.

This chapter proceeds as follows. Section 7.2 describes a financial model in the spirit
of the Black-Scholes-Merton (BSM) economy. Section 7.3 introduces the primal and dual
valuation problems for an American option and the respective MCS valuation algorithms.
Section 7.4 presents valuation results for two different types of American options from a
Python implementation of the MCS algorithms. Section 7.5 concludes.

1Cf. Tsitsiklis and Van Roy (2001) for a similar algorithm published at about the same time. Cf. Kohler
(2009) for comparisons.
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7.2 F INANCIAL MODEL

We consider the continuous market model of Black-Scholes-Merton


BSM = {(Ω, , F, P), T , (S, B)}

with final date T , 0 < T < ∞. Uncertainty in the economy is represented by a filtered proba-
bility space {Ω, , F, P}. Ω denotes the continuous state space,  an 𝜎-algebra, F a filtration
and P the real or objective probability measure.

Against this background, we model for 0 ≤ t ≤ T the risk-neutral evolution of the relevant
stock index S according to the stochastic differential equation (SDE)

dSt

St
= rdt + 𝜎dZt (7.1)

St denotes the index level at date t, r the constant risk-less short rate, 𝜎 the constant volatility
of the index and Zt a standard Brownian motion. The stochastic process generates the filtration
F, i.e. t ≡  (S0≤s≤t). The differential equation a risk-less zero-coupon bond B satisfies is

dBt

Bt
= rdt (7.2)

The time t value of a zero-coupon bond paying one unit of currency at T with 0 ≤ t < T is
Bt(T) = e−r(T−t).

To simulate the financial model, i.e. to generate numerical values for St, the SDE (7.1) has
to be discretized. To this end, divide the given time interval [0, T] in equidistant sub-intervals
Δt such that now t ∈ {0,Δt, 2Δt,… , T}, i.e. there are M + 1 points in time with M ≡ T∕Δt.
A discrete version of the continuous time market model (7.1)–(7.2) is

St

St−Δt
= e

(

r− 𝜎
2

2

)

Δt+𝜎
√
Δtzt

(7.3)

Bt

Bt−Δt
= erΔt (7.4)

for t ∈ {Δt,… , T} and standard normally distributed zt. This scheme is a Euler discretization
based on the log-dynamics of St which is known to be exact for the geometric Brownian
motion (7.1) (cf. Glasserman (2004), pp. 93–94).

7.3 AMERICAN OPTION VALUATION

7.3.1 Problem Formulat ions

By the Fundamental Theorem of Asset Pricing, the time t value of an attainable2 and T -
measurable contingent claim VT ≡ hT (ST ) ≥ 0 (satisfying suitable integrability conditions) is
given by arbitrage as

Vt = EQ
t

(
Bt(T)VT

)

2Recall that a contingent claim is attainable if it can be replicated via an admissible trading strategy in
the index and a zero-coupon bond. A trading strategy is admissible if it is predictable and self-financing
and if its value is at all times finite and bounded from below. See Chapter 4.
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with V0 = EQ
0

(
B0(T)VT

)
as the important special case for valuation purposes. E denotes the

expectation operator and Q the unique risk-neutral probability measure equivalent to the real
world measure P.3 Et(⋅) is short for the conditional expectation E(⋅|t).

The contingent claim could be a European call option maturing at T with payoff hT (ST ) ≡
max[ST − K, 0]. It could also be a European put with payoff hT (ST ) ≡ max[K − ST , 0]. In both
cases, K > 0 is the fixed strike price of the option.

Primal Formulat ion The valuation of contingent claims with American exercise is more
involved. In its primal form, this problem can be formulated as an optimal stopping problem
(cf. Kohler (2009), p. 2)

V0 = sup
𝜏∈[0,T]

EQ
0 (B0(𝜏)h

𝜏
(S

𝜏
)) (7.5)

with V0 being the present value of the American derivative, 𝜏 an F-adapted stopping time,
T the date of maturity, B0(𝜏) the discount factor appropriate for stopping time 𝜏, h

𝜏
a non-

negative, 
𝜏
-measurable payoff function and S

𝜏
the index level process stopped at t = 𝜏. The

expectation is again taken under the risk-neutral measure Q. To value American options by
MCS, the optimal stopping problem (7.5) also has to be discretized:

V0 = sup
𝜏∈{0,Δt,2Δt,…,T}

EQ
0 (B0(𝜏)h

𝜏
(S

𝜏
)) (7.6)

The continuation value Ct at date t of the option, i.e. the value of not exercising the option
at this date, is given under risk-neutrality as

Ct(s) = EQ
t (e−rΔtVt+Δt(St+Δt)|St = s)

using the Markov property of St. Applying another important result in this context (cf. Kohler
(2009), pp. 4–6), the value of the option at date t is then

Vt(s) = max[ht(s), Ct(s)] (7.7)

i.e. the maximum of the payoff ht(s) of immediate exercise and the expected payoff Ct(s) of
not exercising.

The Python script in sub-section 7.6.1 implements this primal valuation problem in the
context of the Cox-Ross-Rubinstein binomial model presented in Chapter 5. The adjustments
to American exercise are quite simple in this context. The script values two different American
options that are further analyzed in section 7.4.

Dual Formulat ion Let M be the set of all Q-martingales t, t ∈ {0,… , T}, satisfying 0 =
0. For any such martingale and a stopping time 𝜏 ∈ {Δt,… , T} it holds (cf. Glasserman

3The defining characteristic of Q is that it makes the discounted index level process a martingale. Cf.
Björk (2004), Theorems 8.3 and 10.17, for completeness of the BSM model (7.1)–(7.2) and uniqueness
of the risk-neutral measure Q, respectively.
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(2004), p. 471)

EQ
0 (B0(𝜏)h

𝜏
(S

𝜏
)) = EQ

0 (B0(𝜏)(h
𝜏
(S

𝜏
) −

𝜏
))

≤ EQ
0

(

max
t∈{Δt,…,T}

B0(t)[ht(St) −t]

)

(7.8)

The first equality follows by the optional sampling property of martingales (cf. Bhattacharya
and Waymire (2007), Theorem 3.6). Since (7.8) holds for any martingale  it also holds for
the infimum taken over all  ∈ M

EQ
0 (B0(𝜏)h

𝜏
(S

𝜏
)) ≤ inf

∈M
EQ

0

(

max
t∈{Δt,…,T}

B0(t)[ht(St) −t]

)

(7.9)

Finally, since (7.9) holds for any 𝜏, it also holds for the supremum taken over all 𝜏 such that

V0 = sup
𝜏∈{0,Δt,…,T}

EQ
0 (B0(𝜏)h

𝜏
(S

𝜏
))

≤ inf
∈M

EQ
0

(

max
t∈{Δt,…,T}

B0(t)[ht(St) −t]

)

(7.10)

It can be proven that the last inequality holds with equality (cf. Kohler (2009), pp. 16–
18). Therefore, the discrete dual problem of valuing an American option given the primal
formulation (7.6) is

V0 = inf
∈Q

EQ
0

(

max
t∈{0,…,T}

B0(t)[ht(St) −t]

)

= EQ
0

(

max
t∈{0,…,T}

B0(t)[ht(St) −
∗
t ]

)

(7.11)

with 
∗ the martingale defined by (cf. Kohler (2009), p. 16)


∗
t =

t∑

u=Δt

(

max[hu(Su), Cu(Su)] − EQ

(

max[hu(Su), Cu(Su)]
|
|
|
|
|

u−Δt

))

=
t∑

u=Δt

(

Vu(Su) − EQ

(

Vu(Su)
|
|
|
|
|

u−Δt

))

(7.12)

7.3.2 Valuat ion Algorithms

This sub-section translates the basic theory into implementable algorithms.

LSM Algorithm The decision to exercise an American option or not is dependent on the
continuation value. Consider a simulation with M + 1 points in time and I paths. Given a
simulated index level St,i, t ∈ {0,… , T}, i ∈ {1,… , I}, what is the continuation value Ct,i(St,i),
i.e. the expected payoff of not exercising the option? Of course, by simulation you know
the simulated continuation value Yt,i ≡ e−rΔtVt+Δt,i. However, using these quantities directly
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would translate into perfect foresight—something not seen in financial markets and therefore
not acceptable for a valuation algorithm. In other words, using these quantities would lead to a
better-than-optimal exercise policy and therewith to a consistently high biased estimator. On
the other hand, estimating the continuation value through a nested MCS, for example, would
lead to generally unacceptable computational times.4

The major insight of Longstaff-Schwartz is to estimate the continuation values Ct,i by
ordinary least-squares regression—hence the name Least-Squares Monte Carlo for their algo-
rithm. They propose to regress the I continuation values Yt,i against the I simulated index levels
St,i. Given D basis functions b with b1,… , bD : RD → R for the regression, the continuation
value Ct,i is according to their approach approximated by

Ĉt,i =
D∑

d=1

𝛼
∗
d,t ⋅ bd(St,i) (7.13)

The optimal regression parameters 𝛼∗d,t are the result of the minimization

min
𝛼1,t ,…,𝛼D,t

1
I

I∑

i=1

(

Yt,i −
D∑

d=1

𝛼d,t ⋅ bd(St,i)

)2

(7.14)

In some circumstances, the quality of the regression can be improved upon when restricting
the paths involved in the regression to those where the option is in-the-money. To apply the
LSM, implement Algorithm 1.

Note that when updating option values Vt,i, the real continuation value Yt,i is to be taken
and not the estimated one Ĉt,i.

Sub-section 7.6.2 presents a Python script implementing the LSM primal algorithm. It
uses the parametrization for the first option of table one in the seminal paper of Longstaff and
Schwartz (2001) (see also the next section).

It is well-known that the LSM estimator (7.15)—for large enough I—provides a lower
bound for the option’s value. However, small I may lead to an in-sample bias of the regressions
in the sense that the resulting exercise policy is better-than-optimal.5 To avoid such a bias, the
algorithm may be divided into two parts. To this end, one would simulate I = I1 + I2 paths and
use the first I1 paths for the derivation of the 𝛼

∗
d,t and the remaining I2 paths for the valuation

of the American option given the 𝛼
∗
d,t.

Dual A lgori thm The algorithm to implement the dual approach to American option valuation
(7.11) and (7.12) uses the optimal regression parameters 𝛼

∗
d,t from the LSM algorithm. The

dual algorithm is forward evolving and shown as Algorithm 2.
Note that when updating the Vt,i, the regression-based estimate for the continuation value

is taken (in contrast to the LSM algorithm). Also note that for t = T the ĈT ,i,j are zero by
definition as well as formally due to the 𝛼

∗
d,T being zero.

4Suppose the continuation value is also estimated with I paths through a nested MCS. Then the number
of simulated index level values increases from (M + 1) ⋅ I to (M + 1) ⋅ I2.
5For I = 1 we again have the situation with perfect foresight. However, for small I > 1 the problem may
nevertheless arise. Cf. Fries (2008).
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Algorithm 1: Primal Algorithm

Divide the time interval [0, T] into equidistant sub-intervals of length Δt1

for t = 0,Δt,… , T do
for i = 1,… , I do

if t = 0 then
Set St,i = S02

else
Draw a standard normally distributed pseudo-random number zt,i3

Simulate the index level value St,i given St−Δt,i and zt,i4

for t = T , T − Δt,… ,Δt, 0 do
if t = T then

Set VT ,i = hT (ST ,i)5

if T > t > 0 then
Regress the Yt,i against the St,i, i ∈ {1,… , I}, given D basis functions b6

Approximate Ct,i by Ĉt,i according to (7.13) given the optimal parameters 𝛼∗d,t from7

(7.14)
According to (7.7) set8

Vt,i =
{

ht(St,i) if ht(St,i) > Ĉt,i
Yt,i if ht(St,i) ≤ Ĉt,i

if t = 0 then
With V0,i ≡ e−rΔtVΔt,i, calculate the LSM estimator as9

V̂LSM
0 = 1

I

I∑

i=1

V0,i (7.15)

7.4 NUMERICAL RESULTS

7.4.1 American Put Opt ion

The first example is a simple American put option. It is the first non-trivial example in the
seminal paper by Longstaff-Schwartz (2001) where the following assumptions are made:

� S0 = 36
� T = 1.0
� r = 0.06
� 𝜎 = 0.2
� ht(s) = max[40 − s, 0]
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Algorithm 2: Dual Algorithm

Divide the time interval [0, T] into equidistant sub-intervals of length Δt1

for t = 0,Δt,… , T do
for i = 1,… , I do

if t = 0 then
Set St,i = S02

else
Draw a standard normally distributed pseudo-random number zt,i3

Simulate the index level value St,i given St−Δt,i and zt,i4

for t = 0,Δt,… , T do
for i = 1,… , I do

if t = 0 then
initialize 0,i = 0 and U0,i = 05

if 0 < t < T then
Simulate J successors St,i,j, j ∈ {1,… , J}, for each St−Δt,i by a nested MCS6

According to (7.7) set Vt,i = max[ht(St,i), Ĉt,i(St,i)] given the 𝛼
∗
d,t from LSM and7

approximation (7.13)
Determine for all i, j the V̂t,i,j = max[ht(St,i,j), Ĉt,i,j(St,i,j)] with the 𝛼

∗
d,t and8

equation (7.13) to approximate Vt,i by V̂t,i =
1
J

∑J
j=1 V̂t,i,j

Set t,i = erΔt
t−Δt,i + (Vt,i − V̂t,i)9

Update Ut,i = max[erΔtUt−Δt,i, ht(St,i) −t,i]10

if t = T then
Update UT ,i = max[erΔtUT−Δt,i, ĥT (ST ,i) −T ,i] where11

ĥT (ST ,i) =
1
J

J∑

j=1

hT (ST ,i,j)

Calculate the dual MCS estimator as12

V̂DUAL
0 = e−rT 1

I

I∑

i=1

UT ,i (7.16)

The true (theoretical) value of this option is 4.486 given a binomial valuation model with
500 time steps.

The Python script in sub-section 7.6.3 implements the LSM algorithm with some addi-
tional features as well as the dual algorithm. As variance reduction techniques the imple-
mentation uses antithetic paths (cf. Glasserman (2004), sec. 4.2) and moment matching (cf.
Glasserman (2004), sec. 4.5.). It is also possible to derive the optimal regression coefficients
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TABLE 7.1 Valuation results from the LSM and DUAL algorithms for the American put optiona

from 25 different simulation runs with base case parametrization.

Algorithm Value M = 25 M = 50 M = 75

LSM Maximum 4.526 4.529 4.544
Mean 4.452 4.470 4.467
Difference −0.034 −0.016 −0.019
Median 4.459 4.471 4.475
Minimum 4.342 4.370 4.391

DUAL Maximum 5.018 4.697 4.753
Mean 4.651 4.595 4.598
Difference 0.165 0.109 0.111
Median 4.632 4.585 4.574
Minimum 4.610 4.570 4.552

Spread Absolute 0.199 0.125 0.131

aThe true value of the American put option from a binomial model with 500 time steps is 4.486. Reported
differences are absolute deviations of the mean values from the correct option value.

on the basis of in-the-money paths only. As regression functions, the implementation uses
simple monomials, the number of which can be chosen freely.

We use the following simulation parameters as our base case to illustrate the valuation of
the American put option:

F IGURE 7.1 Valuation results for the American put option from 25 simulation runs with M = 75
time intervals; AV = average of primal (LSM) and dual (DUAL) values; dashed line = true value
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� M = 25
� I1 = 4 ⋅ 4096, I2 = 1096
� J = 50
� D = 9
� moment matching but no antithetic paths
� all paths are used for the regressions

Experience from a number of numerical experiments suggests that the value estimates
do not become much more accurate when the path numbers I1, I2 or J are increased. The use
of antithetic paths also does not contribute to accuracy. However, increasing the number of
time steps M has a positive effect on the spread between the LSM and DUAL mean value as
Table 7.1 illustrates. Figure 7.1 shows the main results for M = 75 as boxplots.

7.4.2 American Short Condor Spread

The second example is a so-called Short Condor Spread which is mainly a combination of
long and short positions in vanilla options. This type of payoff is analyzed, for example, in
Kohler (2009), sec. 8. The model assumptions now are:

� S0 = 100
� T = 1.0
� r = 0.05
� 𝜎 = 0.5
� ht(s) = min[40,max(90 − s, 0) + max(s − 110, 0)]

This payoff is non-convex and therefore difficult to approximate via parametric regression
with simple monomials. Therefore convergence of the LSM is generally weak and the avail-
ability of a high estimator quite useful. Table 7.2 reports results from different simulations for

TABLE 7.2 Valuation results from the LSM and DUAL algorithms for the Short Condor Spreada

from 25 different simulation runs with base case parametrization.

Algorithm Value M = 25 M = 50 M = 75

LSM Maximum 26.683 26.710 27.063
Mean 25.977 26.027 26.308
Difference −1.000 −0.950 −0.669
Median 25.946 25.989 26.294
Minimum 25.181 25.564 25.521

DUAL Maximum 33.462 45.401 32.416
Mean 27.885 28.177 27.749
Difference 0.908 1.200 0.772
Median 27.493 27.479 27.569
Minimum 27.221 27.230 27.282

Spread Absolute 1.908 2.149 1.441

aThe true value of the American put option from a binomial model with 500 time steps is 26.97705.
Reported differences are absolute deviations of the mean values from the correct option value.
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F IGURE 7.2 Valuation results for the American Short Condor Spread from 25 simulation runs with
M = 75 time intervals; AV = average of primal (LSM) and dual (DUAL) values; dashed line = true
value

this type of American derivative. Here, the increase of M has only a marginal effect on the
spread between the LSM and DUAL mean value. However, the LSM estimate improves with
increasing M. Figure 7.2 shows the valuation results graphically for the case M = 75.

7.5 CONCLUSIONS

The numerically efficient valuation of American options by MCS was almost impossible
until Longstaff-Schwartz published their LSM algorithm in 2001. Although there have been
different approaches available at about the same time (cf. Kohler (2009) or Glasserman (2004),
ch. 8) we focus on the LSM because of its simplicity and popularity in practice. The LSM
estimator for an option’s value is known to be low biased with almost no means of judging
how much too low it is in a practical situation.

We therefore also discuss a dual approach to American options pricing by MCS which
leads to a high biased estimator. Taken together, the two approaches provide an interval
in which the true option value lies. This is illustrated in this chapter by two examples: a
typical American put option and a Short Condor Spread with non-convex payoff. The self-
contained Python scripts accompanying this chapter allow experimentation with different
parametrizations and the numerical analysis of the performance of the algorithms.
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7.6 PYTHON SCRIPTS

7.6.1 Binomia l Valuat ion

#

# Valuation of American Options

# with the Cox-Ross-Rubinstein Model

# Primal Algorithm

# Case 1: American Put Option (APO)

# Case 2: Short Condor Spread (SCS)

# 07_amo/CRR_american_options.py

#

# (c) Dr. Yves J. Hilpisch

# Derivatives Analytics with Python

#

import math

import numpy as np

# General Parameters and Option Values

def set_parameters(otype, M):

''' Sets parameters depending on valuation case.

Parameters

==========
otype: int

option type

1 = American put option

2 = Short Condor Spread

'''

if otype == 1:

# Parameters -- American Put Option

S0 = 36. # initial stock level

T = 1.0 # time-to-maturity

r = 0.06 # short rate

sigma = 0.2 # volatility

elif otype == 2:

# Parameters -- Short Condor Spread

S0 = 100. # initial stock level

T = 1.0 # time-to-maturity

r = 0.05 # short rate

sigma = 0.5 # volatility

else:

raise ValueError('Option type not known.')

# Numerical Parameters
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dt = T / M # time interval

df = math.exp(-r * dt) # discount factor

u = math.exp(sigma * math.sqrt(dt)) # up-movement

d = 1 / u # down-movement

q = (math.exp(r * dt) - d) / (u - d) # martingale probability

return S0, T, r, sigma, M, dt, df, u, d, q

def inner_value(S, otype):

''' Inner value functions for American put option and short condor spread

option with American exercise.

Parameters

==========
otype: int

option type

1 = American put option

2 = Short Condor Spread

'''

if otype == 1:

return np.maximum(40. - S, 0)

elif otype == 2:

return np.minimum(40., np.maximum(90. - S, 0)

+ np.maximum(S - 110., 0))

else:

raise ValueError('Option type not known.')

def CRR_option_valuation(otype, M=500):
S0, T, r, sigma, M, dt, df, u, d, q = set_parameters(otype, M)

# Array Generation for Stock Prices

mu = np.arange(M + 1)

mu = np.resize(mu, (M + 1, M + 1))

md = np.transpose(mu)

mu = u ** (mu - md)

md = d ** md

S = S0 * mu * md

# Valuation by Backwards Induction

h = inner_value(S, otype) # innver value matrix

V = inner_value(S, otype) # value matrix

C = np.zeros((M + 1, M + 1), dtype=np.float) # continuation values

ex = np.zeros((M + 1, M + 1), dtype=np.float) # exercise matrix

z = 0

for i in range(M - 1, -1, -1):
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C[0:M - z, i] = (q * V[0:M - z, i + 1]

+ (1 - q) * V[1:M - z + 1, i + 1]) * df

V[0:M - z, i] = np.where(h[0:M - z, i] > C[0:M - z, i],

h[0:M - z, i], C[0:M - z, i])

ex[0:M - z, i] = np.where(h[0:M - z, i] > C[0:M - z, i], 1, 0)

z += 1

return V[0, 0]

7.6.2 Monte Carlo Valuat ion with LSM

#

# Valuation of American Options

# with Least-Squares Monte Carlo

# Primal Algorithm

# American Put Option

# 07_amo/LSM_primal_valuation.py

#

# (c) Dr. Yves J. Hilpisch

# Derivatives Analytics with Python

#

import math

import numpy as np

np.random.seed(150000)

# Model Parameters

S0 = 36. # initial stock level

K = 40. # strike price

T = 1.0 # time-to-maturity

r = 0.06 # short rate

sigma = 0.2 # volatility

# Simulation Parameters

I = 25000

M = 50

dt = T / M

df = math.exp(-r * dt)

# Stock Price Paths

S = S0 * np.exp(np.cumsum((r - 0.5 * sigma ** 2) * dt

+ sigma * math.sqrt(dt) * np.random.standard_normal((M + 1, I)), axis=0))
S[0] = S0

# Inner Values

h = np.maximum(K - S, 0)

# Present Value Vector (Initialization)

V = h[-1]



140 DERIVATIVES ANALYTICS WITH PYTHON

# American Option Valuation by Backwards Induction

for t in xrange(M - 1, 0, -1):

rg = np.polyfit(S[t], V * df, 5)

C = np.polyval(rg, S[t]) # continuation values

V = np.where(h[t] > C, h[t], V * df)

# exercise decision

V0 = df * np.sum(V) / I # LSM estimator

print "American put option value %5.3f" % V0

7.6.3 Primal and Dual LSM Algorithms

#

# Valuation of American Options

# with Least-Squares Monte Carlo

# Primal and Dual Algorithm

# Case 1: American Put Option (APO)

# Case 2: Short Condor Spread (SCS)

# 07_amo/LSM_primal_dual_valuation.py

#

# (c) Dr. Yves J. Hilpisch

# Derivatives Analytics with Python

#

import math

import numpy as np

import pandas as pd

from time import time

from datetime import datetime

import itertools as it

import warnings

warnings.simplefilter('ignore')

t0 = time()

np.random.seed(150000) # seed for Python RNG

## Simulation Parameters

runs = 5

write = True

otype = [1, 2] # option type

M = [10, 20] # time steps

I1 = np.array([4, 6]) * 4096 # replications for regression

I2 = np.array([1, 2]) * 1024 # replications for valuation

J = [50, 75] # replications for nested MCS

reg = [5, 9] # no of basis functions

AP = [False, True] # antithetic paths

MM = [False, True] # moment matching of RN

ITM = [True, False] # ITM paths for regression
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results = pd.DataFrame()

#

# Function Definitions

#

def generate_random_numbers(I):

''' Function to generate I pseudo-random numbers. '''

if AP:

ran = np.random.standard_normal(I / 2)

ran = np.concatenate((ran, -ran))

else:

ran = np.random.standard_normal(I)

if MM:

ran = ran - np.mean(ran)

ran = ran / np.std(ran)

return ran

def generate_paths(I):

''' Function to generate I stock price paths. '''

S = np.zeros((M + 1, I), dtype=np.float) # stock matrix

S[0] = S0 # initial values

for t in range(1, M + 1, 1): # stock price paths

ran = generate_random_numbers(I)

S[t] = S[t - 1] * np.exp((r - sigma ** 2 / 2) * dt

+ sigma * ran * math.sqrt(dt))

return S

def inner_values(S):

''' Innver value functions for American put and Short Condor Spread. '''

if otype == 1:

return np.maximum(40. - S, 0)

else:

return np.minimum(40., np.maximum(90. - S, 0)

+ np.maximum(S - 110., 0))

def nested_monte_carlo(St, J):

''' Function for nested Monte Carlo simulation.

Parameters

==========
St: float

start value for S

J: int

number of paths to simulate
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Returns

=======
paths : array

simulated nested paths

'''

ran = generate_random_numbers(J)

paths = St * np.exp((r - sigma ** 2 / 2) * dt

+ sigma * ran * math.sqrt(dt))

return paths

#

# Valuation

#

para = it.product(otype, M, I1, I2, J, reg, AP, MM, ITM)

count = 0

for pa in para:

otype, M, I1, I2, J, reg, AP, MM, ITM = pa

## General Parameters and Option Values

if otype == 1:

## Parameters -- American Put Option

S0 = 36. # initial stock level

T = 1.0 # time-to-maturity

r = 0.06 # short rate

sigma = 0.2 # volatility

V0_true = 4.48637 # American Put Option (500 steps bin. model)

else:

## Parameters -- Short Condor Spread

S0 = 100. # initial stock level

T = 1.0 # time-to-maturity

r = 0.05 # short rate

sigma = 0.5 # volatility

V0_true = 26.97705 # Short Condor Spread (500 steps bin. model)

dt = T / M # length of time interval

df = math.exp(-r * dt) # discount factor per time interval

for j in range(runs):

count += 1

# regression estimation

S = generate_paths(I1) # generate stock price paths

h = inner_values(S) # inner values

V = inner_values(S) # value matrix

rg = np.zeros((M + 1, reg + 1), dtype=np.float)
# regression parameter matrix

itm = np.greater(h, 0) # ITM paths

for t in xrange(M - 1, 0, -1):

if ITM:

S_itm = np.compress(itm[t] == 1, S[t])

V_itm = np.compress(itm[t] == 1, V[t + 1])

if len(V_itm) == 0:
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rg[t] = 0.0

else:

rg[t] = np.polyfit(S_itm, V_itm * df, reg)

else:

rg[t] = np.polyfit(S[t], V[t + 1] * df, reg)

# regression at time t

C = np.polyval(rg[t], S[t]) # continuation values

V[t] = np.where(h[t] > C, h[t], V[t + 1] * df)

# exercise decision

## Simulation

Q = np.zeros((M + 1, I2), dtype=np.float) # martingale matrix

U = np.zeros((M + 1, I2), dtype=np.float) # upper bound matrix

S = generate_paths(I2) # generate stock price paths

h = inner_values(S) # inner values

V = inner_values(S) # value matrix

## Primal Valuation

for t in xrange(M - 1, 0, -1):

C = np.polyval(rg[t], S[t]) # continuation values

V[t] = np.where(h[t] > C, h[t], V[t + 1] * df)

# exercise decision

V0 = df * np.sum(V[1]) / I2 # LSM estimator

## Dual Valuation

for t in xrange(1, M + 1):

for i in xrange(I2):

Vt = max(h[t, i], np.polyval(rg[t], S[t, i]))

# estimated value V(t,i)

St = nested_monte_carlo(S[t - 1, i], J) # nested MCS

Ct = np.polyval(rg[t], St) # cv from nested MCS

ht = inner_values(St) # iv from nested MCS

VtJ = np.sum(np.where(ht > Ct, ht, Ct)) / len(St)

# average of V(t,i,j)

Q[t, i] = Q[t - 1, i] / df + (Vt - VtJ) # "optimal" martingale

U[t, i] = max(U[t - 1, i] / df, h[t, i] - Q[t, i])

# high estimator values

if t == M:

U[t, i] = np.maximum(U[t - 1, i] / df,

np.mean(ht) - Q[t, i])

U0 = np.sum(U[M]) / I2 * df ** M # DUAL estimator

AV = (V0 + U0) / 2 # average of LSM and DUAL estimator

# output

print "%4d | %4.1f | %48s " % (count, (time() - t0) / 60, pa), \
"| %6.3f | %6.3f | %6.3f" % (V0, U0, AV)

# results storage

results = results.append(pd.DataFrame({'otype': otype, 'runs': runs,

'M': M, 'I1': I1, 'I2': I2, 'J': J, 'reg': reg, 'AP': AP,
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'MM': MM, 'ITM': ITM, 'LSM': V0, 'LSM_se': (V0 - V0_true) ** 2,

'DUAL': U0, 'DUAL_se': (U0 - V0_true) ** 2, 'AV': AV,

'AV_se': (AV - V0_true) ** 2}, index=[0,]), ignore_index=True)

t1 = time()

print "Total time in min %s" % ((t1 - t0) / 60)

if write:

h5 = pd.HDFStore('results_%s_%s.h5' % (datetime.now().date(),

str(datetime.now().time())[:8]), 'w')

h5['results'] = results

h5.close()
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CHAPTER 8
A First Example of Market-Based

Valuation

8.1 INTRODUCTION

This chapter takes a hands-on approach and dives into a market-based valuation without paying
too much attention to the theoretical and numerical foundations. It addresses all main steps of
such a valuation: market modeling, European call valuation via Fourier techniques, calibration
of a market model to European call option quotes and simulation of the calibrated model.

The exposition might seem a bit bumpy. However, all aspects are addressed and are made
somewhat more precise later in this part of the book. Those with some background knowledge
will find in this first example and the accompanying Python scripts a kind of sandbox in which
first steps in other directions can be taken.

Section 8.2 introduces the market model. Section 8.3 addresses valuation via Fourier-
based approaches. Section 8.4 calibrates the model to real market data. Finally, section 8.5
simulates the calibrated model and values a European call option by simulation.

8.2 MARKET MODEL

We consider the jump-diffusion model M76 of Merton (cf. Merton (1976), M76) as already
sketched out in section 6.6. The plan is to completely implement this specific model numerically
and technically. The time horizon T is fixed, 0 < T < ∞. In this continuous market model, the
index level has risk-neutral dynamics of the form

dSt = (r − rJ)Stdt + 𝜎StdZt + JtStdNt (8.1)

The variables and parameters are defined as follows:

� St index level at date t
� r constant risk-less short rate
� rJ ≡ 𝜆 ⋅ (e𝜇J+𝛿2∕2 − 1) drift correction for jump
� 𝜎 constant volatility of S
� Zt standard Brownian motion

147
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� Jt jump at date t with …
– … distribution log(1 + Jt) ≈ N(log(1 + 𝜇J) − 𝛿

2

2
, 𝛿2) …

– … and N as the cumulative distribution function of a standard normal random variable
� Nt Poisson process with intensity 𝜆

At this moment, a full understanding of the details is not necessary.1 It suffices to under-
stand that these dynamics model a process with “generally” continuous paths which can jump
at certain unforeseeable dates.

8.3 VALUATION

Applying Fourier techniques, one can value European call options in this model in semi-
analytic form—a prerequisite for which is knowledge of the characteristic function for the
stock price dynamics (8.1) in log terms. This is a well-known function of the form

𝜑
M76
0 (u, T) = exp

((

iu𝜔 − u2
𝜎

2

2
+ 𝜆(eiu𝜇J−u2

𝛿
2∕2 − 1)

)

T

)

(8.2)

where the risk-neutral drift term 𝜔 takes on the form

𝜔 = r − 𝜎
2

2
− 𝜆(e𝜇J+𝛿2∕2 − 1) (8.3)

This function may be found, for instance, in Gatheral (2006), pp. 57–58, where one has to
include the non-zero short rate.

To value European call options in this model, we can apply both approaches introduced
in Chapter 6. Sub-section 8.7.1 contains a Python script implementing the following valuation
formula, which is due to Lewis (cf. Lewis (2001)), for the M76 setup and evaluating it via
numerical integration.

C0 = S0 −
√

S0Ke−rT∕2

𝜋 ∫

∞

0
Re

[
eizk

𝜑
M76
0 (z − i∕2, T)

] dz
z2 + 1∕4

The value of a European call option on the index with strike K and maturity T is according
to the Fourier-based approach of Carr-Madan (cf. Carr and Madan (1999)) given by

C0 = e−𝛼k

𝜋 ∫

∞

0
e−ivk

e−rT
𝜑

M76
0 (v − (𝛼 + 1)i, T)

𝛼
2 + 𝛼 − v2 + i(2𝛼 + 1)v

dv

with k = logK. This integral has a form that allows the application of FFT. Sub-section 8.7.2
provides a Python script that implements FFT for the M76 model. For both approaches refer
to section 6.4 for further details and derivations.

1Tankov and Voltchkova (2009) is a concise survey of jump-diffusion models and related techniques.
Cont and Tankov (2004a) is a comprehensive textbook on this topic.
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8.4 CALIBRATION

In simple terms, the—unfortunately ill-posed2—problem of calibration is to find parameters
for the M76 model such that observed market quotes of liquidly traded plain vanilla options
are replicated as closely as possible. To this end, one defines an error function that is to be
minimized. Such a function could be the Root Mean Squared Error (RMSE). The task is then
to solve the problem

min
𝜎,𝜆,𝜇J ,𝛿

√
√
√
√ 1

N

N∑

n=1

(
C∗

n − CM76
n (𝜎, 𝜆,𝜇J , 𝛿)

)2
(8.4)

with the C∗
n being the market or input prices and the CM76

n being the model or output prices
for the options n = 1,… , N.

To gain a first impression of the calibration procedure, Appendix 8.7.3 provides a Python
script that calibrates the M76 model to prices of European call options on the EURO STOXX
50 index from the Eurex in Frankfurt. All prices are from 30. September 2014. The script
uses both global minimization in the form of a brute force algorithm and local minimization
algorithm. The idea is first to roughly scan the error surface and then to dig deeper locally
where it seems most promising. These two steps may be necessary since it cannot be excluded
that there are multiple local minima in which a local minimization algorithm could be trapped.3

Figure 8.1 shows the result of a minimization run. It is obvious that the M76 model is
not capable of perfectly replicating observed market quotes. The degrees of freedom are not
sufficient to simultaneously accommodate both the different maturities and the different strike
levels. This is a first hint at the fact that a realistic financial market model must be richer than
M76.4

However, inspection of Figure 8.2 reveals that calibration of M76 to a small subset of the
market quotes—i.e. to the market quotes for the shortest maturity options only—yields pretty
good results. Appendix 8.7.4 contains the respective Python script which again combines
global with local minimization. This script also uses the FFT approach. In fact, the role of
the jump feature of the general market model will be to better replicate observed short-term
option prices around the at-the-money strike level (while stochastic volatility is needed for
longer maturities). In this calibration the final RMSE is about 0.17 only.

8.5 SIMULATION

To value a European call option with strike price K by MCS consider the simple discretization
of the continuous time dynamics (8.1)

St = St−Δt

(

1 + (r − rJ)Δt + 𝜎

√
Δtz1

t + (e𝜇J+𝛿z2
t − 1)yt

)

(8.5)

2Galluccio and Le Cam (2008) discuss this aspect at considerable length. See also Chapter 11.
3Note that the error function definition in the calibration scripts includes a penalty routine which penalizes
negative values for those parameters that are (economically) not allowed to become negative.
4Tankov and Voltchkova (2009) draw similar conclusions on the basis of another numerical example.
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F IGURE 8.1 Results of the calibration of Merton’s
jump-diffusion model to market quotes for three maturities; lines =
market quotes, dots = model prices
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FIGURE 8.2 Results of the calibration of Merton’s jump-diffusion model to a small subset of market
quotes (i.e. a single maturity only; here: shortest maturity); line = market quotes, dots = model prices,
bars = difference between model values and market quotes

with the zn
t being standard normally distributed and the yt being Poisson distributed with

intensity 𝜆.
An alternative discretization with generally better convergence properties is based on the

log dynamics and takes the form

St = St−Δt

(

e(r−rJ−𝜎2∕2)Δt+𝜎
√
Δtz1

t + (e𝜇J+𝛿z2
t − 1)yt

)

(8.6)

To arrive at a value estimate for a European call option use Algorithm 3.
Appendix 8.7.5 provides a Python script that implements Algorithm 3 with both dis-

cretization alternatives (8.5) and (8.6). The script uses the optimal parameters (rounded) from
the calibration to the short maturity option quotes. In addition, the script contains a routine to
numerically compare the three valuation approaches for varying moneyness levels of the call
option.

The values derived from the different approaches are shown in Figure 8.3. Although the
figure suggests that all valuation results are equal, there are minor differences between the
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Algorithm 3: Valuation Algorithm for Merton (1976)

Divide the time interval [0, T] into equidistant sub-intervals of length Δt1

for t = 0,Δt,… , T do
for i = 1,… , I do

if t = 0 then
Set St,i = S02

else
Draw standard normally distributed pseudo-random numbers z1

t,i, z2
t,i and a3

Poission distributed pseudo-random number yt,i
Simulate the index level value St,i given St−Δt,i and zt,i according to (8.5) or (8.6)4

if t = T then
Determine the inner value hT ,i of the call option at T as5

hT ,i(ST (i)) = max[ST (i) − K, 0]

Sum up the inner values, average and discount them back with the risk-less6

short rate:

C0 ≈ e−rT 1
I

∑

I

hT (ST (i)) (8.7)

F IGURE 8.3 Comparison of European call option values from Lewis formula
(line), from Carr-Madan formula (triangles) and Monte Carlo simulation (dots)
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MCS estimates and the theoretical values according to the Lewis and Carr-Madan approaches.
The detailed results are:

1 CALL STRIKE 3000.000

2 ----------------------------

3 Call Value by Int 269.749

4 Call Value by FFT 269.733

5 Difference FFT/Int -0.016

6 Call Value by MCS 270.503

7 Difference MCS/Int 0.754

8 ----------------------------

9 CALL STRIKE 3050.000

10 ----------------------------

11 Call Value by Int 231.142

12 Call Value by FFT 231.118

13 Difference FFT/Int -0.025

14 Call Value by MCS 231.827

15 Difference MCS/Int 0.685

16 ----------------------------

17 CALL STRIKE 3100.000

18 ----------------------------

19 Call Value by Int 194.905

20 Call Value by FFT 194.890

21 Difference FFT/Int -0.015

22 Call Value by MCS 195.531

23 Difference MCS/Int 0.625

24 ----------------------------

25 CALL STRIKE 3150.000

26 ----------------------------

27 Call Value by Int 161.340

28 Call Value by FFT 161.346

29 Difference FFT/Int 0.006

30 Call Value by MCS 161.905

31 Difference MCS/Int 0.565

32 ----------------------------

33 CALL STRIKE 3200.000

34 ----------------------------

35 Call Value by Int 130.761

36 Call Value by FFT 130.785

37 Difference FFT/Int 0.024

38 Call Value by MCS 131.247

39 Difference MCS/Int 0.486

40 ----------------------------

41 CALL STRIKE 3250.000

42 ----------------------------

43 Call Value by Int 103.466

44 Call Value by FFT 103.492
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45 Difference FFT/Int 0.026

46 Call Value by MCS 103.823

47 Difference MCS/Int 0.357

48 ----------------------------

49 CALL STRIKE 3300.000

50 ----------------------------

51 Call Value by Int 79.695

52 Call Value by FFT 79.705

53 Difference FFT/Int 0.010

54 Call Value by MCS 79.906

55 Difference MCS/Int 0.211

56 ----------------------------

57 CALL STRIKE 3350.000

58 ----------------------------

59 Call Value by Int 59.578

60 Call Value by FFT 59.565

61 Difference FFT/Int -0.013

62 Call Value by MCS 59.677

63 Difference MCS/Int 0.099

64 ----------------------------

65 CALL STRIKE 3400.000

66 ----------------------------

67 Call Value by Int 43.104

68 Call Value by FFT 43.076

69 Difference FFT/Int -0.028

70 Call Value by MCS 43.161

71 Difference MCS/Int 0.057

72 ----------------------------

73 CALL STRIKE 3450.000

74 ----------------------------

75 Call Value by Int 30.097

76 Call Value by FFT 30.071

77 Difference FFT/Int -0.026

78 Call Value by MCS 30.133

79 Difference MCS/Int 0.036

80 ----------------------------

81 CALL STRIKE 3500.000

82 ----------------------------

83 Call Value by Int 20.232

84 Call Value by FFT 20.224

85 Difference FFT/Int -0.008

86 Call Value by MCS 20.288

87 Difference MCS/Int 0.056

88 ----------------------------

89 CALL STRIKE 3550.000

90 ----------------------------

91 Call Value by Int 13.069
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92 Call Value by FFT 13.083

93 Difference FFT/Int 0.015

94 Call Value by MCS 13.161

95 Difference MCS/Int 0.093

96 ----------------------------

97 CALL STRIKE 3600.000

98 ----------------------------

99 Call Value by Int 8.104

100 Call Value by FFT 8.132

101 Difference FFT/Int 0.028

102 Call Value by MCS 8.210

103 Difference MCS/Int 0.106

104 ----------------------------

8.6 CONCLUSIONS

This chapter illustrates market-based valuation in the context of Merton’s jump-diffusion
model. In particular, the chapter provides:

1. model: a market model adding a jump component to the BSM setup
2. vanilla valuation: application of the Fourier-based option pricing approaches of Lewis

and Carr-Madan to the market model
3. calibration: calibration of the model to a number of real market quotes; this is possible

due to the inclusion of a jump component offering more degrees of freedom compared to
BSM

4. simulation: discretization of the model and simulation of it for the purpose of getting
European option values

These building blocks are the typical prerequisites for a market-based valuation of more
complex derivatives. Subsequent chapters address all related aspects in more detail.

8.7 PYTHON SCRIPTS

8.7.1 Valuat ion by Numerical Integrat ion

#

# Valuation of European Call Options

# in Merton's (1976) Jump Diffusion Model

# via Numerical Integration

# 08_m76/M76_valuation_INT.py

#

# (c) Dr. Yves J. Hilpisch

# Derivatives Analytics with Python

#
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import math

import numpy as np

from scipy.integrate import quad

#

# Model Parameters

#

S0 = 100.0 # initial index level

K = 100.0 # strike level

T = 1.0 # call option maturity

r = 0.05 # constant short rate

sigma = 0.4 # constant volatility of diffusion

lamb = 1.0 # jump frequency p.a.

mu = -0.2 # expected jump size

delta = 0.1 # jump size volatility

#

# Valuation by Integration

#

def M76_value_call_INT(S0, K, T, r, sigma, lamb, mu, delta):

''' Valuation of European call option in M76 model via

Lewis (2001) Fourier-based approach.

Parameters

==========

S0: float

initial stock/index level

K: float

strike price

T: float

time-to-maturity (for t=0)

r: float

constant risk-free short rate

sigma: float

volatility factor in diffusion term

lamb: float

jump intensity

mu: float

expected jump size

delta: float

standard deviation of jump

Returns

=======

call_value: float
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European call option present value

'''

int_value = quad(lambda u: M76_integration_function(u, S0, K, T, r,

sigma, lamb, mu, delta), 0, 50, limit=250)[0]

call_value = S0 - np.exp(-r * T) * math.sqrt(S0 * K) / math.pi * int_value

return call_value

def M76_integration_function(u, S0, K, T, r, sigma, lamb, mu, delta):

''' Valuation of European call option in M76 model via

Lewis (2001) Fourier-based approach: integration function.

Parameter definitions see function M76_value_call_INT. '''

JDCF = M76_characteristic_function(u - 0.5 * 1j, T, r,

sigma, lamb, mu, delta)

value = 1 / (u ** 2 + 0.25) * (np.exp(1j * u * math.log(S0 / K))

* JDCF).real

return value

def M76_characteristic_function(u, T, r, sigma, lamb, mu, delta):

''' Valuation of European call option in M76 model via

Lewis (2001) Fourier-based approach: characteristic function.

Parameter definitions see function M76_value_call_INT. '''

omega = r - 0.5 * sigma ** 2 - lamb * (np.exp(mu + 0.5 * delta ** 2) - 1)

value = np.exp((1j * u * omega - 0.5 * u ** 2 * sigma ** 2 +

lamb * (np.exp(1j * u * mu - u ** 2 * delta ** 2 * 0.5) - 1)) * T)

return value

if __name__ == '__main__':

print "Value of Call Option %8.3f" \
% M76_value_call_INT(S0, K, T, r, sigma, lamb, mu, delta)

8.7.2 Valuat ion by FFT

#

# Valuation of European Call Options

# in Merton's (1976) Jump Diffusion Model

# via Fast Fourier Transform (FFT)

# 08_m76/M76_valuation_FFT.py

#

# (c) Dr. Yves J. Hilpisch

# Derivatives Analytics with Python

#
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import math

import numpy as np

from numpy.fft import *

#

# Model Parameters

#

S0 = 100.0 # initial index level

K = 100.0 # strike level

T = 1.0 # call option maturity

r = 0.05 # constant short rate

sigma = 0.4 # constant volatility of diffusion

lamb = 1.0 # jump frequency p.a.

mu = -0.2 # expected jump size

delta = 0.1 # jump size volatility

#

# M76 Characteristic Function

#

def M76_characteristic_function(u, x0, T, r, sigma, lamb, mu, delta):

''' Valuation of European call option in M76 model via

Lewis (2001) Fourier-based approach: characteristic function.

Parameter definitions see function M76_value_call_FFT. '''

omega = x0 / T + r - 0.5 * sigma ** 2 \
- lamb * (np.exp(mu + 0.5 * delta ** 2) - 1)

value = np.exp((1j * u * omega - 0.5 * u ** 2 * sigma ** 2 +

lamb * (np.exp(1j * u * mu - u ** 2 * delta ** 2 * 0.5) - 1)) * T)

return value

#

# Valuation by FFT

#

def M76_value_call_FFT(S0, K, T, r, sigma, lamb, mu, delta):

''' Valuation of European call option in M76 model via

Carr-Madan (1999) Fourier-based approach.

Parameters

==========

S0: float

initial stock/index level

K: float

strike price

T: float
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time-to-maturity (for t=0)

r: float

constant risk-free short rate

sigma: float

volatility factor in diffusion term

lamb: float

jump intensity

mu: float

expected jump size

delta: float

standard deviation of jump

Returns

=======

call_value: float

European call option present value

'''

k = math.log(K / S0)

x0 = math.log(S0 / S0)

g = 2 # factor to increase accuracy

N = g * 4096

eps = (g * 150.) ** -1

eta = 2 * math.pi / (N * eps)

b = 0.5 * N * eps - k

u = np.arange(1, N + 1, 1)

vo = eta * (u - 1)

# Modificatons to Ensure Integrability

if S0 >= 0.95 * K: # ITM case

alpha = 1.5

v = vo - (alpha + 1) * 1j

mod_char_fun = math.exp(-r * T) * M76_characteristic_function(

v, x0, T, r, sigma, lamb, mu, delta) \
/ (alpha ** 2 + alpha - vo ** 2 + 1j * (2 * alpha + 1) * vo)

else: # OTM case

alpha = 1.1

v = (vo - 1j * alpha) - 1j

mod_char_fun_1 = math.exp(-r * T) * (1 / (1 + 1j * (vo - 1j * alpha))

- math.exp(r * T) / (1j * (vo - 1j * alpha))

- M76_characteristic_function(

v, x0, T, r, sigma, lamb, mu, delta)

/ ((vo - 1j * alpha) ** 2 - 1j * (vo - 1j * alpha)))

v = (vo + 1j * alpha) - 1j

mod_char_fun_2 = math.exp(-r * T) * (1 / (1 + 1j * (vo + 1j * alpha))

- math.exp(r * T)/(1j * (vo + 1j * alpha))

- M76_characteristic_function(

v, x0, T, r, sigma, lamb, mu, delta)

/ ((vo + 1j * alpha) ** 2 - 1j * (vo + 1j * alpha)))
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# Numerical FFT Routine

delt = np.zeros(N, dtype=np.float)

delt[0] = 1

j = np.arange(1, N + 1, 1)

SimpsonW = (3 + (-1) ** j - delt) / 3

if S0 >= 0.95 * K:

fft_func = np.exp(1j * b * vo) * mod_char_fun * eta * SimpsonW

payoff = (fft(fft_func)).real

call_value_m = np.exp(-alpha * k) / math.pi * payoff

else:

fft_func = (np.exp(1j * b * vo)

* (mod_char_fun_1 - mod_char_fun_2)

* 0.5 * eta * SimpsonW)

payoff = (fft(fft_func)).real

call_value_m = payoff / (np.sinh(alpha * k) * math.pi)

pos = int((k + b) / eps)

call_value = call_value_m[pos]

return call_value * S0

if __name__ == '__main__':

print "Value of Call Option %8.3f" \
% M76_value_call_FFT(S0, K, T, r, sigma, lamb, mu, delta)

8.7.3 Cal ibrat ion to Three Maturit ies

#

# Calibration of Merton's (1976)

# Jump Diffusion Model

# via Fast Fourier Transform

# 08_m76/M76_calibration_FFT.py

#

# (c) Dr. Yves J. Hilpisch

# Derivatives Analytics with Python

#

import math

import numpy as np

np.set_printoptions(suppress=True,

formatter={'all': lambda x: '%5.3f' % x})
import pandas as pd

import scipy.optimize as sop

import matplotlib.pyplot as plt

import matplotlib as mpl

mpl.rcParams['font.family'] = 'serif'

from M76_valuation_FFT import M76_value_call_FFT



A First Example of Market-Based Valuation 161

#

# Market Data from www.eurexchange.com

# as of 30. September 2014

#

h5 = pd.HDFStore('08_m76/option_data.h5', 'r')

data = h5['data'] # European call & put option data (3 maturities)

h5.close()

S0 = 3225.93 # EURO STOXX 50 level

r = 0.0005 # ECB base rate

# Option Selection

tol = 0.02

options = data[(np.abs(data['Strike'] - S0) / S0) < tol]

#

# Error Function

#

def M76_error_function_FFT(p0):

''' Error Function for parameter calibration in M76 Model via

Carr-Madan (1999) FFT approach.

Parameters

==========

sigma: float

volatility factor in diffusion term

lamb: float

jump intensity

mu: float

expected jump size

delta: float

standard deviation of jump

Returns

=======

RMSE: float

root mean squared error

'''

global i, min_RMSE

sigma, lamb, mu, delta = p0

if sigma < 0.0 or delta < 0.0 or lamb < 0.0:

return 500.0

se = []

for row, option in options.iterrows():

T = (option['Maturity'] - option['Date']).days / 365.

http://www.eurexchange.com


162 DERIVATIVES ANALYTICS WITH PYTHON

model_value = M76_value_call_FFT(S0, option['Strike'], T,

r, sigma, lamb, mu, delta)

se.append((model_value - option['Call']) ** 2)

RMSE = math.sqrt(sum(se) / len(se))

min_RMSE = min(min_RMSE, RMSE)

if i % 50 == 0:

print '%4d |' % i, np.array(p0), '| %7.3f | %7.3f' % (RMSE, min_RMSE)

i += 1

return RMSE

def generate_plot(opt, options):

#

# Calculating Model Prices

#

sigma, lamb, mu, delta = opt

options['Model'] = 0.0

for row, option in options.iterrows():

T = (option['Maturity'] - option['Date']).days / 365.

options.loc[row, 'Model'] = M76_value_call_FFT(S0, option['Strike'],

T, r, sigma, lamb, mu, delta)

#

# Plotting

#

mats = sorted(set(options['Maturity']))

options = options.set_index('Strike')

for i, mat in enumerate(mats):

options[options['Maturity'] == mat][['Call', 'Model']].\
plot(style=['b-', 'ro'], title='%s' % str(mat)[:10])

plt.ylabel('option value')

plt.savefig('../images/08_m76/M76_calibration_3_%s.pdf' % i)

if __name__ == '__main__':

#

# Calibration

#

i = 0 # counter initialization

min_RMSE = 100 # minimal RMSE initialization

p0 = sop.brute(M76_error_function_FFT, ((0.075, 0.201, 0.025),

(0.10, 0.401, 0.1), (-0.5, 0.01, 0.1),

(0.10, 0.301, 0.1)), finish=None)

# p0 = [0.15, 0.2, -0.3, 0.2]

opt = sop.fmin(M76_error_function_FFT, p0,

maxiter=500, maxfun=750,

xtol=0.000001, ftol=0.000001)
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8.7.4 Cal ibrat ion to Short Maturity

#

# Calibration of Merton's (1976)

# Jump Diffusion Model

# to Short Maturity Data

# 08_m76/M76_calibration_single.py

#

# (c) Dr. Yves J. Hilpisch

# Derivatives Analytics with Python

#

import math

import numpy as np

np.set_printoptions(suppress=True,

formatter={'all': lambda x: '%5.3f' % x})
import pandas as pd

import scipy.optimize as sop

import matplotlib.pyplot as plt

import matplotlib as mpl

mpl.rcParams['font.family'] = 'serif'

from M76_valuation_FFT import M76_value_call_FFT

#

# Market Data from www.eurexchange.com

# as of 30. September 2014

#

h5 = pd.HDFStore('08_m76/option_data.h5', 'r')

data = h5['data'] # European call & put option data (3 maturities)

h5.close()

S0 = 3225.93 # EURO STOXX 50 level

r = 0.005 # assumption

# Option Selection

tol = 0.05

options = data[(np.abs(data['Strike'] - S0) / S0) < tol]

mats = sorted(set(options['Maturity']))

options = options[options['Maturity'] == mats[0]]

#

# Error Function

#

def M76_error_function_FFT(p0):

''' Error function for parameter calibration in M76 Model via

Carr-Madan (1999) FFT approach.

http://www.eurexchange.com
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Parameters

==========

sigma: float

volatility factor in diffusion term

lamb: float

jump intensity

mu: float

expected jump size

delta: float

standard deviation of jump

Returns

=======

RMSE: float

root mean squared error

'''

global i, min_RMSE

sigma, lamb, mu, delta = p0

if sigma < 0.0 or delta < 0.0 or lamb < 0.0:

return 500.0

se = []

for row, option in options.iterrows():

T = (option['Maturity'] - option['Date']).days / 365.

model_value = M76_value_call_FFT(S0, option['Strike'], T,

r, sigma, lamb, mu, delta)

se.append((model_value - option['Call']) ** 2)

RMSE = math.sqrt(sum(se) / len(se))

min_RMSE = min(min_RMSE, RMSE)

if i % 50 == 0:

print '%4d |' % i, np.array(p0), '| %7.3f | %7.3f' % (RMSE, min_RMSE)

i += 1

return RMSE

#

# Graphical Output

#

def generate_plot(opt, options):

#

# Calculating Model Prices

#

sigma, lamb, mu, delta = opt

options['Model'] = 0.0

for row, option in options.iterrows():

T = (option['Maturity'] - option['Date']).days / 365.

options.loc[row, 'Model'] = M76_value_call_FFT(S0, option['Strike'],

T, r, sigma, lamb, mu, delta)
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#

# Plotting

#

options = options.set_index('Strike')

fig, ax = plt.subplots(2, sharex=True, figsize=(8, 7))

options[['Call', 'Model']].plot(style=['b-', 'ro'],

title='%s' % str(option['Maturity'])[:10], ax=ax[0])

ax[0].set_ylabel('option values')

xv = options.index.values

ax[1] = plt.bar(xv - 5 / 2., options['Model'] - options['Call'],

width=5)

plt.ylabel('difference')

plt.xlim(min(xv) - 10, max(xv) + 10)

plt.tight_layout()

plt.grid()

#

# Calibration

#

if __name__ == '__main__':

i = 0

min_RMSE = 100.

p0 = sop.brute(M76_error_function_FFT, ((0.10, 0.201, 0.025),

(0.1, 0.8, 0.1), (-0.4, 0.01, 0.1),

(0.00, 0.121, 0.02)), finish=None)

opt = sop.fmin(M76_error_function_FFT, p0, xtol=0.00001,

ftol=0.00001, maxiter=750, maxfun=1500)

8.7.5 Valuat ion by MCS

#

# Valuation of European Call Options

# in Merton's (1976) Jump Diffusion Model

# via Monte Carlo Simulation

# 08_m76/M76_valuation_MCS.py

#

# (c) Dr. Yves J. Hilpisch

# Derivatives Analytics with Python

#

import math

import numpy as np

import pandas as pd
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from M76_valuation_FFT import M76_value_call_FFT

from M76_valuation_INT import M76_value_call_INT

#

# Model Parameters (from Calibration)

#

S0 = 3225.93 # EURO STOXX 50 level (30.09.2014)

T = 0.22 # shortest maturity

r = 0.005 # assumption

sigma, lamb, mu, delta = [0.113, 3.559, -0.075, 0.041]

# from calibration

#

# Valuation by Simulation

#

seed = 100000 # seed value

M = 50 # time steps

I = 200000 # paths

disc = 2 # 1 = simple Euler; else = log Euler

def M76_generate_paths(S0, T, r, sigma, lamb, mu, delta, M, I):

''' Generate Monte Carlo Paths for M76 Model.

Parameters

==========

S0: float

initial stock/index level

K: float

strike price

T: float

time-to-maturity (for t=0)

r: float

constant risk-free short rate

sigma: float

volatility factor in diffusion term

lamb: float

jump intensity

mu: float

expected jump size

delta: float

standard deviation of jump

M: int

number of time intervals

I: int

number of paths
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Returns

=======

S: array

simulated paths

'''

dt = T / M

rj = lamb * (math.exp(mu + 0.5 * delta ** 2) - 1)

shape = (M + 1, I)

S = np.zeros((M + 1, I), dtype=np.float)

S[0] = S0

np.random.seed(10000)

rand1 = np.random.standard_normal(shape)

rand2 = np.random.standard_normal(shape)

rand3 = np.random.poisson(lamb * dt, shape)

for t in xrange(1, M + 1, 1):

if disc == 1:

S[t] = S[t - 1] * ((1 + (r - rj) * dt) + sigma

* math.sqrt(dt) * rand1[t]

+ (np.exp(mu + delta * rand2[t]) - 1)

* rand3[t])

else:

S[t] = S[t - 1] * (np.exp((r - rj - 0.5 * sigma ** 2) * dt

+ sigma * math.sqrt(dt) * rand1[t])

+ (np.exp(mu + delta * rand2[t]) - 1)

* rand3[t])

return S

def M76_value_call_MCS(K):

''' Function to calculate the MCS estimator given K.

Parameters

==========

K: float

strike price

Returns

=======

call_mcs: float

European call option Monte Carlo estimator

'''

return math.exp(-r * T) * np.sum(np.maximum(S[-1] - K, 0)) / I

if __name__ == '__main__':
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# Single Valuation

S = M76_generate_paths(S0, T, r, sigma, lamb, mu, delta, M, I)

print "Value of Call Option %8.3f" % M76_value_call_MCS(S0)

# Value Comparisons

strikes = np.arange(3000, 3601, 50)

values = np.zeros((3, len(strikes)), dtype=np.float)

z = 0

for k in strikes:

print "CALL STRIKE %10.3f" % k

print "----------------------------"

values[0, z] = M76_value_call_INT(S0, k, T, r, sigma,

lamb, mu, delta)

print "Call Value by Int %10.3f" % values[0, z]

values[1, z] = M76_value_call_FFT(S0, k, T, r, sigma,

lamb, mu, delta)

print "Call Value by FFT %10.3f" % values[1, z]

print "Difference FFT/Int%10.3f" % (values[1, z] - values[0, z])

values[2, z] = M76_value_call_MCS(k)

print "Call Value by MCS %10.3f" % values[2, z]

print "Difference MCS/Int%10.3f" % (values[2, z] - values[0, z])

print "----------------------------"

z = z + 1

results = pd.DataFrame(values.T, index=strikes, columns=[

'INT', 'FFT', 'MCS'])

results.index.name = 'Strike'



CHAPTER 9
General Model Framework

9.1 INTRODUCTION

Chapter 8 conducts a model calibration and market-based valuation with the jump-diffusion
model of Merton (1976). The calibration effort reveals that a jump component alone is not
capable of replicating a typical volatility surface. It is rather necessary to include at least a
stochastic volatility component (as already pointed out in Chapter 3). In addition, we also
need a stochastic short rate component to accommodate stylized facts of interest rate markets.

This chapter therefore introduces in section 9.2 the model framework of Bakshi, Cao
and Chen (1997, BCC97, Bakshi et al. (1997)) that includes as special cases a number of
popular financial models, like the Black-Scholes-Merton model. Section 9.3 briefly recaps
the main statistical features a realistic market model should exhibit. That section also cites
a number of empirical findings regarding the performance of the framework under different
parametrizations. Section 9.5 then concerns itself with the valuation of European options in
the general framework—a necessary prerequisite for an efficient calibration procedure.

9.2 THE FRAMEWORK

Given is a filtered probability space (Ω, , F, P) representing uncertainty in the model economy


BCC97 with final date T where 0 < T < ∞. Ω denotes the continuous state space,  a
𝜎-algebra, F a filtration and P the real or objective probability measure. Traded securities are
a risky stock index S and a risky unit zero-coupon bond B.

Together, we have the continuous market model


BCC97 = {(Ω, , F, P), T , (S, B)}

More specifically, the market model of Bakshi-Cao-Chen is characterized by stochastic volatil-
ity, jump risk and stochastic short rates. The risk-neutral dynamics of the stock index S are
according to the stochastic volatility jump-diffusion model of Bates (1996, B96)

dSt = (rt − rJ)Stdt +
√

vtStdZ1
t + JtStdNt (9.1)

dvt = 𝜅v(𝜃v − vt)dt + 𝜎v
√

vtdZ2
t (9.2)
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The meanings of the variables and parameters are

� St index level at date t
� rt risk-less short rate at date t
� rJ ≡ 𝜆 ⋅ (e𝜇J+𝛿2∕2 − 1) drift correction for jump
� vt variance at date t
� 𝜅v speed of adjustment of vt to …
� … 𝜃v, the long-term average of the variance
� 𝜎v volatility coefficient of the index’s variance
� Zn

t standard Brownian motions
� Nt Poisson process with intensity 𝜆

� Jt jump at date t with …
– … distribution log(1 + Jt) ≈ N(log(1 + 𝜇J) − 𝛿

2

2
, 𝛿2) …

– … and N as the cumulative distribution function of a standard normal random variable

Regarding the stochastic short rate, the model uses the setup of Cox, Ingersoll and Ross
(1985, CIR85, Cox et al. (1985)) with the following dynamics for the short rate

drt = 𝜅r(𝜃r − rt)dt + 𝜎r
√

rtdZ3
t (9.3)

The variables and the parameters of this square-root diffusion have, respectively, the meaning:

� rt short rate at date t
� 𝜅r speed of adjustment of rt to …
� … 𝜃r, the long-term average of the short rate
� 𝜎r volatility coefficient of the short rate
� Z3

t standard Brownian motion

All stochastic processes are adapted to the filtration F. Moreover, instantaneous correla-
tions are dZ1

t dZ2
t ≡ 𝜌dt, dZ1

t dZ3
t ≡ dZ2

t dZ3
t ≡ 0, Nt independent of Zn

t , n = 1, 2, 3. The value
of a zero-coupon bond paying one unit of currency at T > t is

Bt(T) = EQ
t

(

exp
(

−
∫

T

t
rudu

))

with E being the expectation operator and Q a risk-neutral, P-equivalent probability measure
which we assume to exist (i.e. we assume no free lunches with vanishing risk (NFLVR)). We
define the set of uncertainties by Xt ≡ (St, vt, rt)—something needed occasionally.

9.3 FEATURES OF THE FRAMEWORK

A market model must, in order to be of any practical use, fulfill a minimum set of requirements.

� statistical properties: a fundamental requirement is that the model be able to replicate the
most important statistical properties of the stock index and the interest rate to be modeled
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� price replication: another important requirement is that a market model be able to
replicate market prices from, for example, plain vanilla options like European puts and
calls on indices and bonds or swaps

� degrees of freedom: from a formal perspective the market model has to offer sufficient
degrees of freedom, i.e. parameters, to calibrate it to market prices or implied volatilities
and the yield curve

Recall the results of Chapter 3. There it is shown that a realistic market model should …

� … take into account that index (implied) volatility
– varies over time (stochasticity, mean reversion, clustering)
– is negatively correlated with returns (leverage effect)
– varies for different option strikes (volatility smile)
– varies for different option maturities (volatility term structure)

� … account for jumps in the index development
� … take into account that interest rates

– vary over time (positivity, stochasticity, mean reversion)
– vary for different time horizons (term structure)

The general framework is capable, in principle, of fulfilling several or all of these require-
ments and of reproducing the statistical properties of stock indices sufficiently well. In a
similar vein, it can also reproduce the most important characteristics of interest rates, like
time-varying short rate or horizon-dependent yield (so-called yield curve). These statements
will be substantiated in Chapter 11 where we will see that the general framework indeed repro-
duces the required statistical features sufficiently well. In addition, we will see that quotes
from European call options will also be reproduced satisfactorily.

As a convenient fact, the framework of BCC97 encompasses as special cases the following
widely applied option pricing models:

� Black-Scholes-Merton (1973, BSM, Black and Scholes (1973) and Merton (1973)):
a model with geometric Brownian motion as the driving force and constant volatility as
well as constant short rate (cf. Chapter 5)

� Merton (1976, M76, Merton (1976)): a model that enriches the model of BSM with a
log-normally distributed jump component (cf. Chapter 8)

� Heston (1993, H93, Heston (1993)): one of the most popular models with stochastic
volatility and constant short rate

� Bates (1996, B96, Bates (1996)) a model that adds a jump component to the stochastic
volatility setting of H93

In addition, the general framework allows these special cases to be enriched by stochastic,
instead of constant, short rates.

BCC97 conduct a number of empirical analyses for different parametrizations of their
general model. Some major findings are:

� quality of calibration: “Our empirical evidence indicates that regardless of performance
yardstick, taking stochastic volatility into account is of the first-order importance in
improving upon the BS[M] formula.”



172 DERIVATIVES ANALYTICS WITH PYTHON

� quality of valuation: “According to the out-of-sample pricing measures, adding the ran-
dom jump feature to the [stochastic volatility] model can further improve its performance,
especially in pricing short-term options; whereas modeling stochastic interest rates can
enhance the fit of long-term options.”

� hedging performance: “For hedging purposes, however, incorporating either the jump
or the [stochastic interest rate] feature does not seem to improve the [stochastic volatility]
model’s performance further. The [stochastic volatility model] achieves the best hedging
results among all the models studied, and its remaining hedging errors are generally quite
small.”1

As BCC97, p. 2009, point out, zero correlation between stock index and short rate might
be counter-factual. However, when considering non-zero correlation they find no improvement
upon the model with zero correlation:

“…when we implement this slightly more general model [with non-zero correlation],
we find its pricing and hedging performance to be indistinguishable from that of the
[stochastic volatility, stochastic interest rate] model studied in this article.”

All in all, the framework of BCC97 seems well-suited to address the valuation and hedging
of equity derivatives in an integrated manner. Fundamentally, it can be calibrated to observed
market prices due to its sufficient degrees of freedom, it is capable of valuing derivative
assets reasonably accurately and it provides hedging strategies that perform quite well. It also
explicitly models all major market risks that affect equity derivatives, like index risk, volatility
risk, jump risk and interest rate risk.

9.4 ZERO-COUPON BOND VALUATION

The discount factor B0(T) for discounting cash flows due at time T to time t = 0, i.e. the
present value of a zero-coupon bond paying one unit of currency at T , in the CIR85 model
takes the form (cf. Glasserman (2004), 128–129)

B0(T) = b1(T)e−b2(T)r0 (9.4)

b1(T) ≡

[
2𝛾 exp((𝜅r + 𝛾)T∕2)

2𝛾 + (𝜅r + 𝛾)(e𝛾T − 1)

] 2𝜅r𝜃r
𝜎

2
r (9.5)

b2(T) ≡
2(e𝛾T − 1)

2𝛾 + (𝜅r + 𝛾)(e𝛾T − 1)
(9.6)

𝛾 ≡

√

𝜅
2
r + 2𝜎2

r (9.7)

1All quotes from Bakshi et al. (1997), pp. 2042–2043.
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The Python script of sub-section 9.7.2 implements formulas (9.4)–(9.7) for use in the European
option valuation that follows.

9.5 EUROPEAN OPTION VALUATION

This section analyzes the valuation of European (call) options in the general framework. Three
approaches are considered:

� PDE method: the traditional approach to derivative asset valuation is to solve a partial
differential equation (PDE) that a derivative asset must satisfy given the dynamics of the
underlying; this approach is sketched in Chapter 5 for the BSM model

� Fourier-based pricing: via Fourier transforms it is possible to derive for a number of
models (semi-)analytical pricing formulas, i.e. integrals, for certain derivative assets, like
European call options; Chapter 6 analyzes this approach in some detail

� Monte Carlo simulation: via discretizing the relevant risk-neutral processes and using
(quasi- or pseudo-)random numbers one can generate random process evolutions and
thereby values for the derivative asset under consideration at maturity or exercise; iterating
sufficiently often, discounting the single option values at maturity or exercise back and
averaging over all discounted option values then yields an estimate of the option value;
Chapters 7 and 8 use this method

The valuation formulas obtained by the PDE approach or the transform method may
then be evaluated via numerical integration or Fast Fourier Transform (FFT). However, no
matter what valuation approach or numerical method is used, the general principle is that of
no arbitrage pricing, which Chapter 4 explores comprehensively.

The PDE approach is quite powerful in addressing general valuation and hedging issues
while the transform method is particularly appropriate for certain models and payoff structures.
The advantage of the latter is, however, the form of the resulting (semi-)analytical valuation
formulas that typically allow for fast numerical solutions. Monte Carlo simulation is most
flexible in terms of models, payoff structures and other features (e.g. early exercise)—but
generally also the slowest and least accurate alternative. For practical purposes, one therefore
uses a mix of these approaches. When calibrating models to plain vanilla options, transforms
are generally the method of choice. When valuing complex products with, for example,
multiple underlyings, Asian or American features, Monte Carlo simulation often is the only
practical choice.

Translated to the context of this book, the formulas from the transform method for plain
vanilla options are used for calibration purposes while Monte Carlo simulation (based on the
already calibrated model) yields numerical values for more complex equity derivatives.

9.5.1 PDE Approach

Omitting time indices, the value of a European call option on the stock index must satisfy—
according to Itô’s lemma (see section 9.7.1) and given the general market model—the PDE as
reported in the following proposition.
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Proposition 8 (BCC97 PDE). A European call option C(S, v, r, t) must satisfy in the general
market model the PDE

1
2

vS2 𝜕
2C
𝜕S

+ [r − rJ]S
𝜕C
𝜕S

+ 𝜌𝜎vvS
𝜕

2C
𝜕S𝜕v

+

+1
2
𝜎

2
v
𝜕

2C
𝜕v2

+ 𝜅v[𝜃v − v]
𝜕C
𝜕v

+

+1
2
𝜎

2
r
𝜕

2C
𝜕r2

+ 𝜅r[𝜃r − r]
𝜕C
𝜕r

+ 𝜕C
𝜕t

− rC +

+𝜆EQ[C(K, T; (1 + J)S, v, r, t) − C(K, T; S, v, r, t−)] = 0 (9.8)

with suitable boundary conditions and in particular CT (ST , K) = max[ST − K, 0] as the inner
value of the call option at maturity T.

Proof. Consider a contingent claim A(S, v, r, t) and apply proposition 9 to it

dA(S, v, r, t) = 𝜕A
𝜕S

(mdt + vdZ1 + jdN) + 𝜕A
𝜕v
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𝜕r

vdZ3

Next, replace drift, volatility and jump terms by their counterparts from BCC97 (omitting
time subscripts)

m = (r − rJ)S

m = 𝜅v(𝜃v − v)

m = 𝜅r(𝜃r − r)

v =
√

vS

v = 𝜎v

√
v

v = 𝜎r

√
r

j = JS

The PDE (9.8) follows from taking expectation EQ(dA) under the risk-neutral probability
measure Q of the incremental change of the derivative asset’s value
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EQ(dA(S, v, r, t)) =
(
𝜕A
𝜕S

(r − rJ)S + 𝜆EQ(A((1 + J)S, t) − A(S, t−))

+ 𝜕A
𝜕v
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2A
𝜕S2
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2
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𝜎
2
v v + 1

2
𝜕

2A
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𝜎
2
r r

+ 𝜕
2A

𝜕S𝜕v
𝜎vvS𝜌 + 𝜕A

𝜕t

)

dt

and noting that under risk-neutrality EQ(dA) = rAdt must hold. Dividing by dt, replacing A by
C for the European call option and rearranging yields the PDE (9.8).

A solution to the central equation (9.8) is

Ct(K, T) = St ⋅ Π1(T; S, v, r, t) − Bt(T) ⋅ K ⋅ Π2(T; S, v, r, t) (9.9)

where for j = 1, 2

Πj(T; S, v, r, t) = 1
2
+ 1

𝜋 ∫

∞

0
Re

[
e−iu log(K)

𝜑j(T; S, v, r, t; u)

iu

]

du

The 𝜑j are characteristic functions as defined in the appendix of BCC97 and Re[x] gives the
real part of x. In what follows, formula (9.9) plays essentially no role. It is nevertheless given
here for reasons of completeness and its resemblance to the famous BSM formula—which is
remarkable since the model of BCC97 is much richer.

9.5.2 Transform Methods

The key to the application of the Fourier transform methods of Lewis (2001) and Carr and
Madan (1999) is knowledge of the characteristic function of the stochastic processes governing
the evolution of the underlying. Chapter 8 illustrates this for the jump-diffusion model of M76
whose jump part is also a component of the general framework. However, the basic processes
are those of H93.

The characteristic function 𝜑
H93
0 of the H93 stochastic volatility model is given by (cf.

Heston (1993) or Gatheral (2006), ch. 2)

𝜑
H93
0 (u, T) = eH1(u,T)+H2(u,T)v0 (9.10)

with the following definitions

c1 ≡ 𝜅v𝜃v

c2 ≡ −
√

(𝜌𝜎vui − 𝜅v)2 − 𝜎
2
v (−ui − u2)

c3 ≡

𝜅v − 𝜌𝜎vui + c2

𝜅v − 𝜌𝜎vui − c2
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H1(u, T) ≡ r0,TuiT +
c1

𝜎
2
v

{

(𝜅v − 𝜌𝜎vui + c2)T − 2 log
[

1 − c3ec2T

1 − c3

]}

H2(u, T) ≡
𝜅v − 𝜌𝜎vui + c2

𝜎
2
v

[
1 − ec2T

1 − c3ec2T

]

and all variables as defined as before. In H1 we set r0,T = − log(B0(T))∕T where we get B0(T)
from equations (9.4)–(9.7) for the CIR85 model.

For the M76 model we already know the characteristic function 𝜑
M76
0 (u, T); see equations

(6.14) and (6.15). These have to be adjusted since only the jump part (and not the diffusive
part) is needed here:

𝜑
M76J
0 (u, T) = exp

((

iu𝜔 + 𝜆(eiu𝜇J−u2
𝛿

2∕2 − 1)
)

T
)

(9.11)

where the risk-neutral drift term 𝜔 now takes the form

𝜔 = −𝜆(e𝜇J+𝛿2∕2 − 1) (9.12)

Due to zero correlation between the H93 index part and the index jump component, the
characteristic function for the BCC97 model is obtained by simple multiplication as

𝜑
BCC97
0 (u, T) = 𝜑

H93
0 ⋅ 𝜑M76J

0 (u, T) (9.13)

Sub-section 9.7.3 provides a Python script that implements the Lewis formula (6.5) for the
BCC97 model and the sub-models H93 and M76.

9.5.3 Monte Carlo Simulat ion

Monte Carlo simulation is a rather flexible valuation approach which is capable of much
more than already seen in Chapters 7 and 8. It is applicable to almost any feature a financial
product can exhibit: American and Bermudan exercise, Asian and lookback features (i.e. path
dependency), multiple underlyings (i.e. a basket, for example) or simultaneous dependence on
stock indices and interest rates (i.e. hybrid products). For a given financial model, Glasserman
(2004), p. 30, gives the simplified recipe as replicated in Algorithm 4 for the risk-neutral
valuation of a derivative asset with European exercise via Monte Carlo simulation.

Algorithm 4: General Monte Carlo Algorithm

replace the drift of the given dynamics (SDE) of the underlying with the risk-free short rate1

discretize the risk-neutral continuous time dynamics to obtain difference equations in2

discrete time
simulate (sufficient) paths3

determine the payoffs of the derivative asset for each path at maturity4

discount the payoffs with the appropriate discount factor5

calculate the average of the discounted payoffs over all paths6
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Subsequent chapters show how to apply this recipe to different parametrizations of the
general framework. Previous chapters apply Monte Carlo simulation only to quite simple
settings, i.e. BSM and M76, where exact discretizations are available in simple forms. However,
as will become apparent, the simulation of the H93 model is a particularly tricky task with
regard to the discretization step of Algorithm 4. Therefore, Chapter 10 devotes considerable
attention to this topic. In that chapter, both European options and American options are valued
for a number of different parametrizations for both the market model and the Monte Carlo
simulation setup.

9.6 CONCLUSIONS

This chapter provides a general market model which is capable of addressing the major market
risks affecting equity derivatives: index risk, volatility risk, jump risk and short rate risk. The
following chapters will build on this foundation and will simulate the model, calibrate it and
use it to value European and American options in a market-consistent manner. It will also
be shown how to use numerical procedures to implement dynamic delta hedging strategies in
this model.

9.7 PROOFS AND PYTHON SCRIPTS

9.7.1 I t ô ’s Lemma

Proposition 9 (Itô’s Lemma). Let f : R4 → R be a twice continuously differentiable function
and S, v, r be (jump) diffusions

dSt = mtdt + vtdZ1
t + jtdNt (9.14)

dvt = mtdt + vtdZ2
t (9.15)

drt = mtdt + vtdZ3
t (9.16)

dZ1
t dZ2

t ≡ 𝜌dt

dZ3
t dZn≠3

t ≡ 0 (9.17)

dNtdZn
t ≡ 0 (9.18)

with Zn standard Brownian motions and N a Poisson process. Then for f (S, v, r, t) the marginal
change in time is (omitting time subscripts)
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2f

𝜕S𝜕v
vv𝜌dt (9.19)
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Proof. First, a Taylor series expansion up to second order yields (suppressing dt2 terms and
other terms of equal or smaller order as well as accounting for the respective zero correlations
(9.17) and (9.18))

df (S, v, r, t) =
𝜕f

𝜕S
dS +
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𝜕v
dv +
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2
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2

(
𝜕

2f

𝜕S𝜕v
dSdv +

𝜕
2f

𝜕v𝜕S
dvdS

)

(9.20)

Second, the assumptions about f ensure that the mixed partial derivatives are the same. Third,
it holds

dS2 = v2dt

dv2 = v2dt

dr2 = v2dt

dSdv = vv𝜌dt

Substituting these terms and (9.14)–(9.16) in (9.20) gives (9.19) after rearranging. See also
Brandimarte (2006), pp. 97–102.

9.7.2 Python Script for Bond Valuat ion

#

# Valuation of Zero-Coupon Bonds

# in Cox-Ingersoll-Ross (1985) Model

# 09_gmm/CIR_zcb_valuation.py

#

# (c) Dr. Yves J. Hilpisch

# Derivatives Analytics with Python

#

import math

import numpy as np

#

# Example Parameters CIR85 Model

#

kappa_r, theta_r, sigma_r, r0, T = 0.3, 0.04, 0.1, 0.04, 1.0

#

# Zero-Coupon Bond Valuation Formula

#
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def gamma(kappa_r, sigma_r):

''' Help Function. '''

return math.sqrt(kappa_r ** 2 + 2 * sigma_r ** 2)

def b1(alpha):

''' Help Function. '''

kappa_r, theta_r, sigma_r, r0, T = alpha

g = gamma(kappa_r, sigma_r)

return (((2 * g * math.exp((kappa_r + g) * T / 2)) /

(2 * g + (kappa_r + g) * (math.exp(g * T) - 1)))

** (2 * kappa_r * theta_r / sigma_r ** 2))

def b2(alpha):

''' Help Function. '''

kappa_r, theta_r, sigma_r, r0, T = alpha

g = gamma(kappa_r, sigma_r)

return ((2 * (math.exp(g * T) - 1)) /

(2 * g + (kappa_r + g) * (math.exp(g * T) - 1)))

def B(alpha):

''' Function to value unit zero-coupon bonds in Cox-Ingersoll-Ross (1985)

model.

Parameters

==========

r0: float

initial short rate

kappa_r: float

mean-reversion factor

theta_r: float

long-run mean of short rate

sigma_r: float

volatility of short rate

T: float

time horizon/interval

Returns

=======

zcb_value: float

zero-coupon bond present value

'''

b_1 = b1(alpha)

b_2 = b2(alpha)

kappa_r, theta_r, sigma_r, r0, T = alpha

return b_1 * math.exp(-b_2 * r0)
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if __name__ == '__main__':

#

# Example Valuation

#

B0T = B([kappa_r, theta_r, sigma_r, r0, T])

# discount factor, ZCB value

print "ZCB Value %10.4f" % B0T

9.7.3 Python Script for European Cal l Va luat ion

#

# Valuation of European Call and Put Options

# Under Stochastic Volatility and Jumps

# 09_gmm/BCC_option_valuation.py

#

# (c) Dr. Yves J. Hilpisch

# Derivatives Analytics with Python

#

import numpy as np

from scipy.integrate import quad

from CIR_zcb_valuation import B

import warnings

warnings.simplefilter('ignore')

#

# Example Parameters B96 Model

#

## H93 Parameters

kappa_v = 1.5

theta_v = 0.02

sigma_v = 0.15

rho = 0.1

v0 = 0.01

## M76 Parameters

lamb = 0.25

mu = -0.2

delta = 0.1

sigma = np.sqrt(v0)

## General Parameters

S0 = 100.0

K = 100.0

T = 1.0

r = 0.05
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#

# Valuation by Integration

#

def BCC_call_value(S0, K, T, r, kappa_v, theta_v, sigma_v, rho, v0,

lamb, mu, delta):

''' Valuation of European call option in B96 Model via Lewis (2001)

Fourier-based approach.

Parameters

==========

S0: float

initial stock/index level

K: float

strike price

T: float

time-to-maturity (for t=0)

r: float

constant risk-free short rate

kappa_v: float

mean-reversion factor

theta_v: float

long-run mean of variance

sigma_v: float

volatility of variance

rho: float

correlation between variance and stock/index level

v0: float

initial level of variance

lamb: float

jump intensity

mu: float

expected jump size

delta: float

standard deviation of jump

Returns

=======

call_value: float

present value of European call option

'''

int_value = quad(lambda u: BCC_int_func(u, S0, K, T, r, kappa_v, theta_v,

sigma_v, rho, v0, lamb, mu, delta), 0, np.inf, limit=250)[0]

call_value = max(0, S0 - np.exp(-r * T) * np.sqrt(S0 * K)

/ np.pi * int_value)

return call_value
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def H93_call_value(S0, K, T, r, kappa_v, theta_v, sigma_v, rho, v0):

''' Valuation of European call option in H93 model via Lewis (2001)

Fourier-based approach.

Parameters

==========

S0: float

initial stock/index level

K: float

strike price

T: float

time-to-maturity (for t=0)

r: float

constant risk-free short rate

kappa_v: float

mean-reversion factor

theta_v: float

long-run mean of variance

sigma_v: float

volatility of variance

rho: float

correlation between variance and stock/index level

v0: float

initial level of variance

Returns

=======

call_value: float

present value of European call option

'''

int_value = quad(lambda u: H93_int_func(u, S0, K, T, r, kappa_v,

theta_v, sigma_v, rho, v0), 0, np.inf, limit=250)[0]

call_value = max(0, S0 - np.exp(-r * T) * np.sqrt(S0 * K)

/ np.pi * int_value)

return call_value

def M76_call_value(S0, K, T, r, v0, lamb, mu, delta):

''' Valuation of European call option in M76 model via Lewis (2001)

Fourier-based approach.

Parameters

==========

S0: float

initial stock/index level

K: float

strike price
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T: float

time-to-maturity (for t=0)

r: float

constant risk-free short rate

lamb: float

jump intensity

mu: float

expected jump size

delta: float

standard deviation of jump

Returns

=======

call_value: float

present value of European call option

'''

sigma = np.sqrt(v0)

int_value = quad(lambda u: M76_int_func_sa(u, S0, K, T, r,

sigma, lamb, mu, delta), 0, np.inf, limit=250)[0]

call_value = max(0, S0 - np.exp(-r * T) * np.sqrt(S0 * K)

/ np.pi * int_value)

return call_value

#

# Integration Functions

#

def BCC_int_func(u, S0, K, T, r, kappa_v, theta_v, sigma_v, rho, v0,

lamb, mu, delta):

''' Valuation of European call option in BCC97 model via Lewis (2001)

Fourier-based approach: integration function.

Parameter definitions see function BCC_call_value.'''

char_func_value = BCC_char_func(u - 1j * 0.5, T, r, kappa_v, theta_v,

sigma_v, rho, v0, lamb, mu, delta)

int_func_value = 1 / (u ** 2 + 0.25) \
* (np.exp(1j * u * np.log(S0 / K)) * char_func_value).real

return int_func_value

def H93_int_func(u, S0, K, T, r, kappa_v, theta_v, sigma_v, rho, v0):

''' Valuation of European call option in H93 model via Lewis (2001)

Fourier-based approach: integration function.

Parameter definitions see function H93_call_value.'''
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char_func_value = H93_char_func(u - 1j * 0.5, T, r, kappa_v,

theta_v, sigma_v, rho, v0)

int_func_value = 1 / (u ** 2 + 0.25) \
* (np.exp(1j * u * np.log(S0 / K)) * char_func_value).real

return int_func_value

def M76_int_func_sa(u, S0, K, T, r, sigma, lamb, mu, delta):

''' Valuation of European call option in M76 model via Lewis (2001)

Fourier-based approach: integration function.

Parameter definitions see function M76_call_value.'''

char_func_value = M76_char_func_sa(u - 0.5 * 1j, T, r, sigma,

lamb, mu, delta)

int_func_value = 1 / (u ** 2 + 0.25) \
* (np.exp(1j * u * np.log(S0 / K)) * char_func_value).real

return int_func_value

#

# Characteristic Functions

#

def BCC_char_func(u, T, r, kappa_v, theta_v, sigma_v, rho, v0,

lamb, mu, delta):

''' Valuation of European call option in BCC97 model via Lewis (2001)

Fourier-based approach: characteristic function.

Parameter definitions see function BCC_call_value.'''

BCC1 = H93_char_func(u, T, r, kappa_v, theta_v, sigma_v, rho, v0)

BCC2 = M76_char_func(u, T, lamb, mu, delta)

return BCC1 * BCC2

def H93_char_func(u, T, r, kappa_v, theta_v, sigma_v, rho, v0):

''' Valuation of European call option in H93 model via Lewis (2001)

Fourier-based approach: characteristic function.

Parameter definitions see function BCC_call_value.'''

c1 = kappa_v * theta_v

c2 = -np.sqrt((rho * sigma_v * u * 1j - kappa_v)

** 2 - sigma_v ** 2 * (-u * 1j - u ** 2))

c3 = (kappa_v - rho * sigma_v * u * 1j + c2) \
/ (kappa_v - rho * sigma_v * u * 1j - c2)

H1 = (r * u * 1j * T + (c1 / sigma_v ** 2)

* ((kappa_v - rho * sigma_v * u * 1j + c2) * T

- 2 * np.log((1 - c3 * np.exp(c2 * T)) / (1 - c3))))
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H2 = ((kappa_v - rho * sigma_v * u * 1j + c2) / sigma_v ** 2

* ((1 - np.exp(c2 * T)) / (1 - c3 * np.exp(c2 * T))))

char_func_value = np.exp(H1 + H2 * v0)

return char_func_value

def M76_char_func(u, T, lamb, mu, delta):

''' Valuation of European call option in M76 model via Lewis (2001)

Fourier-based approach: characteristic function.

Parameter definitions see function M76_call_value.'''

omega = -lamb * (np.exp(mu + 0.5 * delta ** 2) - 1)

char_func_value = np.exp((1j * u * omega + lamb

* (np.exp(1j * u * mu - u ** 2 * delta ** 2 * 0.5) - 1)) * T)

return char_func_value

def M76_char_func_sa(u, T, r, sigma, lamb, mu, delta):

''' Valuation of European call option in M76 model via Lewis (2001)

Fourier-based approach: characteristic function "jump component".

Parameter definitions see function M76_call_value.'''

omega = r - 0.5 * sigma ** 2 - lamb * (np.exp(mu + 0.5 * delta ** 2) - 1)

char_func_value = np.exp((1j * u * omega - 0.5 * u ** 2 * sigma ** 2

+ lamb * (np.exp(1j * u * mu - u ** 2 * delta ** 2 * 0.5)

- 1)) * T)

return char_func_value

if __name__ == '__main__':

#

# Example Parameters CIR85 Model

#

kappa_r, theta_r, sigma_r, r0, T = 0.3, 0.04, 0.1, 0.04, T

B0T = B([kappa_r, theta_r, sigma_r, r0, T]) # discount factor

r = -np.log(B0T) / T

#

# Example Values

#

print "M76 Value %10.4f" \
% M76_call_value(S0, K, T, r, v0, lamb, mu, delta)

print "H93 Value %10.4f" \
% H93_call_value(S0, K, T, r, kappa_v, theta_v, sigma_v, rho, v0)

print "BCC97 Value %10.4f" \
% BCC_call_value(S0, K, T, r, kappa_v, theta_v,

sigma_v, rho, v0, lamb, mu, delta)





CHAPTER 10
Monte Carlo Simulation

10.1 INTRODUCTION

Monte Carlo simulation is among the most important numerical algorithms of the 20th century
(cf. Cipra (2000)) and obviously will remain so in the 21st century as well. Its importance for
financial applications stems from the fact that it is most flexible in terms of financial products
that can be valued. First applied to European option pricing in 1977 by Phelim Boyle (cf.
Boyle (1977)), it took until the 21st century for the problem of valuing American options by
Monte Carlo simulation to be satisfactorily solved by Francis Longstaff and Eduardo Schwartz
(cf. Longstaff and Schwartz (2001)) and others (cf. Chapter 7). Glasserman (2004) provides
a comprehensive introduction to Monte Carlo methods for financial engineering and is a
standard reference. Kohler (2009) is a survey article of regression-based valuation approaches
for American options.

Although quite flexible, Monte Carlo simulation is generally not very fast (relative to
alternative approaches) since millions of computations are necessary to value a single option.
Consider a simulation run with 100 time intervals (=100 exercise dates) and 100,000 paths
for an American put option on a single stock with constant volatility and constant short rate.
You need 10 million random numbers, several arrays (i.e. matrices) of size 101 times 100,000
and you have to estimate 100 least-squares regressions over 100,000 pairs of numbers as well
as discounting 100 times 100,000 numbers. If you enrich the financial model to include, for
example, stochastic volatility and stochastic interest rates the number of necessary calculations
further increases substantially.

For practical purposes, it is important to have available efficient, i.e. accurate and fast,
algorithms to value options and other derivatives by Monte Carlo simulation. This chapter
therefore analyzes in detail the simulation of financial models of type (9.1)–(9.3) as presented
in the previous chapter. The simulation of equation (9.1) turns out be straightforward since
an exact discretization is easily found. However, this is not the case for the two square-root
diffusions (9.2) and (9.3).

The chapter proceeds as follows. Section 10.2 values zero-coupon bonds in the CIR85
model by Monte Carlo simulation. Here, we only need to consider a single square-root diffu-
sion. Section 10.3 values European options by Monte Carlo simulation in the H93 stochastic
volatility model with constant short rate and without jumps. Section 10.4 then adds stochastic
short rates of CIR85 type to the H93 setting to value American put options by Monte Carlo
simulation. Section 10.5 summarizes the major findings.
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10.2 VALUATION OF ZERO-COUPON BONDS

In this section, we consider the stochastic short rate model CIR85 of Cox-Ingersoll-Ross
(cf. Cox et al. (1985)) which is given by the SDE (9.3). We repeat the SDE for convenience:

drt = 𝜅r(𝜃r − rt)dt + 𝜎r
√

rtdZt

To simulate the short rate model, it has to be discretized. To this end, we again divide
the given time interval [0, T] in equidistant sub-intervals of length Δt such that now t ∈
{0,Δt, 2Δt, ..., T}, i.e. there are M + 1 points in time with M ≡ T∕Δt.

The exact transition law of the square-root diffusion is known. The article by Broadie
and Kaya (2006) provides an in-depth analysis of this topic. Consider the general square-root
diffusion process

dxt = 𝜅(𝜃 − xt)dt + 𝜎

√
xtdZt (10.1)

In Broadie and Kaya (2006) it is shown that xt, given xs with s = t − Δt, is distributed according
to

xt =
𝜎

2
(
1 − e−𝜅Δt

)

4𝜅
𝜒

′2
d

(
4𝜅e−𝜅Δt

𝜎
2(1 − e−𝜅Δt)

xs

)

where 𝜒

′2
d denotes a non-central chi-squared distributed random variable with

d = 4𝜃𝜅
𝜎

2

degrees of freedom and non-centrality parameter

l = 4𝜅e−𝜅Δt

𝜎
2(1 − e−𝜅Δt)

xs

For implementation purposes, it may be convenient to sample a chi-squared distributed random
variable 𝜒

2
d instead of a non-central chi-squared one, 𝜒

′2
d . If d > 1, the following relationship

holds true

𝜒

′2
d (l) =

(

z +
√

l
)2

+ 𝜒
2
d−1

where z is an independent standard normally distributed random variable. Similarly, if d ≤ 1,
one has

𝜒

′2
d (l) = 𝜒

2
d+2N

where N is now a Poisson-distributed random variable with intensity l∕2. For an algorithmic
representation of this simulation scheme refer to Glasserman (2004), p. 124.
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The exactness comes with a relatively high computational burden which may, however,
be justified by higher accuracy due to faster convergence. In other words, although the com-
putational burden per simulated value of xt may be relatively high with the exact scheme, the
possible reduction in necessary time steps and simulation paths may more than compensate
for this. However, Andersen, Jäckel and Kahl argue in Andersen et al. (2010)—referring to
the exact simulation approach of Broadie and Kaya (2006)—that

“One might think that the existence of an exact simulation-scheme … would settle
once and for all the question of how to generate paths of the square-root process.…,
it seems [nevertheless] reasonable to also investigate the application of simpler sim-
ulation algorithms. These will typically exhibit a bias for finite values of [M], but
convenience and speed may more than compensate for this, …”

We therefore also consider a Euler discretization of the square-root diffusion (10.1). A
possible discretization is given by

x̃t = x̃s + 𝜅(𝜃 − max[0, x̃s])Δt + 𝜎

√
max[0, x̃s]

√
Δtzt (10.2)

xt = max[0, x̃s] (10.3)

with zt standard normal (this scheme is usually called Full Truncation, see below). While xt
cannot reach zero with the exact scheme if the Feller condition 2𝜅𝜃 > 𝜎

2 is met, this is not
the case with the Euler scheme. Therefore, the maximum function is applied several times.1

The plan now is as follows. We simulate the CIR85 model and derive Monte Carlo
simulation estimates for Zero-Coupon Bond (ZCB) values at different points in time. Since we
know these values in closed form in the CIR85 model, we have a natural benchmark to check
the accuracy of the Monte Carlo simulation implementation. Chapter 9 presents the respective
formula for the present value of the ZCB, i.e. for t = 0. Sub-section 10.6.1 contains a Python
implementation which allows us to freely choose 0 < t ≤ T . Two adjustments are made:

1. The final date T is replaced by time-to-maturity T − t
2. The initial rate r0 is replaced by the expectation

E(rt) = 𝜃r + e−𝜅rt(r0 − 𝜃r)

Figure 10.1 shows 20 simulated paths for the short rate process of CIR85 and for the
example parameters of the Python script of sub-section 10.6.2. A Monte Carlo simulation
estimator for the value of the ZCB at t is derived as follows. Consider a certain path i of the
I simulated paths for the short rate process with time grid t ∈ {0,Δt, 2Δt, ..., T}. We discount

1There are number of alternative Euler schemes available which section 10.3 presents and compares with
regard to their performance, i.e. accuracy and speed.
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F IGURE 10.1 Twenty simulated paths for the CIR85 short rate process

the terminal value of the ZCB, i.e. 1.0, step by step backwards. For t < T and s ≡ t − Δt we
have

Bs,i = Bt,ie
− rt+rs

2
Δt

The Monte Carlo simulation estimator of the ZCB value at t then is

BMCS
t = 1

I

I∑

i=1

Bt,i

Figures 10.2 and 10.3 present valuation results for both the exact scheme and the Euler
scheme compared, respectively, to the analytical values for a ZCB maturing at T = 2. The
figures illustrate that with M = 50 time steps and I = 50,000 paths both schemes deliver Monte
Carlo simulation estimates really close to the analytical values. However, the Euler scheme
shows a systematically low bias in this particular case. The errors for the exact scheme are not
only smaller but also negative as well as positive.

In terms of speed, the Euler scheme is indeed much faster. The generation of I = 50,000
sample paths with M = 50 time steps takes only about one-quarter of the time with the Euler
scheme compared to the exact scheme. As a consequence, one could, for example, double the
number of time steps to M = 100 to increase accuracy of the Euler scheme.

These numbers and comparisons are illustrative only. They are by no means a “proof”
that the exact scheme easily outperforms a Euler scheme. The subsequent section revisits this
issue in the context of the stochastic volatility model of H93—in this case we need to correlate
the square-root diffusion with a second process which introduces a new problem area.



F IGURE 10.2 Values for a ZCB maturing at T = 2; line = analytical values, dots = Monte Carlo
simulation estimates from the exact scheme for M = 50 and I = 50,000

F IGURE 10.3 Values for a ZCB maturing at T = 2; line = analytical values, dots = Monte Carlo
simulation estimates from the Euler scheme for M = 50 and I = 50,000
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10.3 VALUATION OF EUROPEAN OPTIONS

As the next special case of the general framework 
BCC97 with risk-neutral dynamics given

by (9.1)–(9.3), we consider the H93 stochastic volatility model H93 with constant short rate.
This section values European call and put options in this model by Monte Carlo simulation. As
for the ZCB values, we also have available a (semi-analytical) pricing formula which generates
natural benchmark values against which to compare the Monte Carlo simulation estimates.

For 0 ≤ t ≤ T , the risk-neutral dynamics of the index in the H93 stochastic volatility
model are given by

dSt = rStdt +
√

vtStdZ1
t (10.4)

with the variance following the square-root diffusion

dvt = 𝜅v(𝜃v − vt)dt + 𝜎v
√

vtdZ2
t (10.5)

The two Brownian motions are instantaneously correlated with dZ1
t dZ2

t = 𝜌. This correlation
introduces a new problem dimension into the discretization for simulation purposes (cf. Broadie
and Kaya (2006)). To avoid problems arising from correlating normally distributed increments
(of S) with chi-squared distributed increments (of v), we consider in the following only Euler
schemes for both the S and v processes. This has the advantage that the increments of v become
normally distributed as well and can therefore be easily correlated with the increments of S.

In total, we consider two discretization schemes for S and seven discretization schemes
for v. For S, we consider the exact log Euler scheme with

St = Sse
(r−vt∕2)Δt+

√
vt

√
Δtz1

t (10.6)

where s ≡ t − Δt and z1
t standard normal. This scheme is obtained by considering the dynamics

of log St and applying Itô’s lemma to it. For illustration purposes, we also consider the naive
Euler discretization (with s ≡ t − Δt)

St = Ss

(

erΔt +
√

vt

√
Δtz1

t

)

(10.7)

These schemes can be combined with any of the following Euler schemes for the square-
root diffusion.2

� Full Truncation

x̃t = x̃s + 𝜅(𝜃 − x̃+s )Δt + 𝜎

√

x̃+s
√
Δtzt

xt = x̃+t

2In the following, x+ is notation for max[x, 0].
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� Partial Truncation

x̃t = x̃s + 𝜅(𝜃 − x̃s)Δt + 𝜎

√

x̃+s
√
Δtzt

xt = x̃+t

� Truncation

xt = max[0, xs + 𝜅(𝜃 − xs)Δt + 𝜎

√
xs

√
Δtzt]

� Reflection

x̃t = |
|x̃s

|
| + 𝜅(𝜃 − |

|x̃s
|
|)Δt + 𝜎

√
|
|x̃s

|
|

√
Δtzt

xt = |
|x̃t

|
|

� Higham-Mao

x̃t = x̃s + 𝜅(𝜃 − x̃s)Δt + 𝜎

√
|
|x̃s

|
|

√
Δtzt

xt = |
|x̃t

|
|

� Simple Reflection

xt =
|
|
|
xs + 𝜅(𝜃 − xs)Δt + 𝜎

√
xs

√
Δtzt

|
|
|

� Absorption

x̃t = x̃+s + 𝜅(𝜃 − x̃+s )Δt + 𝜎

√

x̃+s
√
Δtzt

xt = x̃+t

This list contains only Euler schemes and is not exhaustive with regard to discretization
schemes for the square-root diffusion (cf. Andersen et al. (2010), Andersen (2008), Broadie
and Kaya (2006), Glasserman (2004) and Haastrecht and Pelsser (2010)). However, all these
schemes share the convenient feature that correlation of the variance square-root diffusion
with the index process is easily accomplished.

In the literature, there are a lot of tests and numerical studies available that compare
efficiency of different discretization schemes. But since the approach of this book is a practical
one, we want to implement our own test and comparison procedures. Moreover, we want to
use Python in combination with the data management and analysis library pandas to automate
our tests.

For our tests, we take four different parametrizations for the H93 model as found in
Medvedev and Scaillet (2010), table 3. In these four model economies, we value the following:

� options: European call and put options
� maturities: we take T ∈ { 1

12
, 1, 2}

� strikes: we take K ∈ {90, 100, 110} for S0 = 100
� time steps: we take M ∈ {25, 50} steps per year
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� paths: we take I ∈ {25,000, 50,000, 75,000, 100,000}
� discretization: we combine all schemes (two for index with seven for variance = 14

schemes)

This makes a total of 36 option values per option type. In view of the empirical results
about option spreads and tick sizes, as presented in section 3.5, we say that a valuation is
accurate if

1. the absolute value difference is smaller than 2.5 cents or
2. the absolute value difference is smaller than 1.5%

To improve upon valuation accuracy, we use both moment matching and antithetic paths
for our Python implementation found in sub-section 10.6.3. This script writes all results into
a pandas DataFrame object and saves this in HDF5 format to disk (e.g. for later usage and
analysis).

To generate antithetic paths (cf. Glasserman (2004), sec. 4.2), we use both the pseudo-
random number zt,i and its negative value −zt,i (where we generate only I∕2 random numbers).
With regard to moment matching (cf. Glasserman (2004), sec. 4.5.), we correct the first two
moments of the pseudo-random numbers delivered by Python. The respective code for both
antithetic paths and moment matching looks like this:

def random_number_generator(M, I):

if antipath:

rand = np.random.standard_normal((2, M + 1, I / 2))

rand = np.concatenate((rand, -rand), 2)

else:

rand = np.random.standard_normal((2, M + 1, I))

if momatch:

rand = rand / np.std(rand)

rand = rand - np.mean(rand)

return rand

Depending on the time interval Δt used, the drift of the index level process may also show
a non-negligible bias (even after correction of the random numbers). We can correct the first
moment of the index level process in a fashion similar to the pseudo-random numbers:

for t in range(1, M + 1, 1):

ran = np.dot(CM, rand[:, t])

if momatch:

bias = np.mean(np.sqrt(v[t]) * ran[row] * sdt)

if s_disc == ’Log’:

S[t] = S[t - 1] * np.exp((r - 0.5 * v[t]) * dt +

np.sqrt(v[t]) * ran[row] * sdt - bias)

elif s_disc == ’Naive’:

S[t] = S[t - 1] * (math.exp(r * dt) +

np.sqrt(v[t]) * ran[row] * sdt - bias)
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TABLE 10.1 Valuation results for European call and put options in H93 model for parametrizations
from Medvedev and Scaillet (2010) and M0 = 50, I = 100,000. Performance yardsticks are
PY1 = 0.025 and PY1 = 0.015.a

OT R I ID XD MM AP #ER #OP AE MSE

CALL 5 100,000 L A False False 146 180 0.07670 3.74152
CALL 5 100,000 L A False True 146 180 0.07288 3.75574
CALL 5 100,000 L A True False 3 180 0.00633 0.00136
CALL 5 100,000 L A True True 3 180 0.00468 0.00149
CALL 5 100,000 L F False False 146 180 0.03556 3.63164
CALL 5 100,000 L F False True 148 180 0.03462 3.62426
CALL 5 100,000 L F True False 1 180 −0.01659 0.00113
CALL 5 100,000 L F True True 1 180 −0.01299 0.00090
CALL 5 100,000 L P False False 144 180 0.03942 3.68678
CALL 5 100,000 L P False True 145 180 0.04079 3.64441
CALL 5 100,000 L P True False 1 180 −0.01474 0.00108
CALL 5 100,000 L P True True 1 180 −0.01128 0.00111
CALL 5 100,000 L T False False 147 180 0.07196 3.72847
CALL 5 100,000 L T False True 145 180 0.07256 3.74803
CALL 5 100,000 L T True False 3 180 0.00340 0.00155
CALL 5 100,000 L T True True 3 180 0.01147 0.00162
PUT 5 100,000 L A False False 143 180 0.04343 0.93155
PUT 5 100,000 L A False True 141 180 0.04284 0.93065
PUT 5 100,000 L A True False 14 180 0.00445 0.00110
PUT 5 100,000 L A True True 20 180 0.00657 0.00149
PUT 5 100,000 L F False False 141 180 0.03198 0.94487
PUT 5 100,000 L F False True 142 180 0.03797 0.94874
PUT 5 100,000 L F True False 9 180 −0.01349 0.00068
PUT 5 100,000 L F True True 10 180 −0.01379 0.00083
PUT 5 100,000 L P False False 143 180 0.03593 0.96873
PUT 5 100,000 L P False True 141 180 0.03330 0.94941
PUT 5 100,000 L P True False 3 180 −0.00881 0.00041
PUT 5 100,000 L P True True 5 180 −0.00987 0.00056
PUT 5 100,000 L T False False 143 180 0.04830 0.92206
PUT 5 100,000 L T False True 142 180 0.04231 0.92051
PUT 5 100,000 L T True False 10 180 0.00687 0.00111
PUT 5 100,000 L T True True 10 180 0.00445 0.00117

aMonte Carlo simulation values benchmarked against semi-analytical values from Fourier-based pricing
approach. The columns report the following values: OT = the option type (call or put), R = number
of valuation runs, I = number of paths per single option valuation, ID = (first letter of) discretization
scheme for index process, XD = (first letter of) discretization scheme for variance process, MM =
moment matching, AP = antithetic paths, #ER = number of errors out of #OP, #OP = number of options
valued, AE = average error over all valuations, MSE = mean squared error of all valuations.

Table 10.1 reports valuation results for European call and put options with M0 = 50 and
I = 100,000. Here, M0 means steps per year. For example, if time-to-maturity is 2 years, we set
M = 2 ⋅ M0 = 100. The table uses the exact scheme for the index process and combines this
with four different schemes for the variance process (Full Truncation, Partial Truncation,
Truncation and Absorption). It is evident that variance reduction techniques are indispensable
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F IGURE 10.4 Boxplot of Monte Carlo valuation errors without and with moment
matching

in this setting. While antithetic paths have no noticeable influence ceteris paribus, moment
matching significantly increases accuracy of the valuation process. Using moment matching
(with or without antithetic paths) the Full Truncation scheme shows the best overall perfor-
mance. However, for some configurations the Absorption scheme, for example, also performs
quite well. The average absolute valuation errors for the total set of 180 options when using
moment matching mainly range between 0.5 cents and 1 cent. The good performance of the
Full Truncation scheme is in line with results obtained in Lord et al. (2006) who name this
particular scheme as their winner.

Figure 10.4 illustrates the importance of moment matching techniques in this context. The
correction effect moment matching has for Monte Carlo valuation is impressively illustrated
in that figure.

Table 10.2 presents further valuation results. This time all possible combinations of the
discretization schemes are considered. Again, the Full Truncation scheme generates good
valuation results—and, which may come as a surprise, the naive discretization scheme for the
index process also performs relatively well throughout.

10.4 VALUATION OF AMERICAN OPTIONS

We now turn to American (put) options which are a little bit harder to value efficiently, i.e.
accurately and fast, by Monte Carlo simulation.3 The setup for this section is the H93 stochastic

3This section is mainly based on a 2011 working paper by the author titled “Fast Monte Carlo Valuation
of American Options under Stochastic Volatility and Interest Rates.” The results of the paper were
presented at the EuroScipy 2011 conference in Paris.
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TABLE 10.2 Valuation results for European call and put options in H93 model for parametrizations
from Medvedev and Scaillet (2010) and M0 = 50, I = 100,000. Performance yardsticks are
PY1 = 0.025 and PY1 = 0.015.a

OT R I ID XD MM AP #ER #OP AE MSE

CALL 5 100,000 L A True True 3 180 0.00468 0.00149
CALL 5 100,000 L F True True 1 180 −0.01299 0.00090
CALL 5 100,000 L H True True 4 180 0.01169 0.00175
CALL 5 100,000 L P True True 1 180 −0.01128 0.00111
CALL 5 100,000 L R True True 5 180 0.01208 0.00253
CALL 5 100,000 L S True True 13 180 0.02979 0.00659
CALL 5 100,000 L T True True 3 180 0.01147 0.00162
CALL 5 100,000 N A True True 1 180 0.00805 0.00101
CALL 5 100,000 N F True True 2 180 −0.01566 0.00104
CALL 5 100,000 N H True True 4 180 0.00545 0.00226
CALL 5 100,000 N P True True 4 180 −0.01526 0.00120
CALL 5 100,000 N R True True 6 180 0.01221 0.00279
CALL 5 100,000 N S True True 11 180 0.03020 0.00549
CALL 5 100,000 N T True True 3 180 0.00692 0.00174
PUT 5 100,000 L A True True 20 180 0.00657 0.00149
PUT 5 100,000 L F True True 10 180 −0.01379 0.00083
PUT 5 100,000 L H True True 14 180 0.00808 0.00157
PUT 5 100,000 L P True True 5 180 −0.00987 0.00056
PUT 5 100,000 L R True True 18 180 0.01005 0.00207
PUT 5 100,000 L S True True 29 180 0.02747 0.00592
PUT 5 100,000 L T True True 10 180 0.00445 0.00117
PUT 5 100,000 N A True True 16 180 0.00084 0.00123
PUT 5 100,000 N F True True 9 180 −0.01466 0.00075
PUT 5 100,000 N H True True 13 180 0.00402 0.00176
PUT 5 100,000 N P True True 7 180 −0.01529 0.00070
PUT 5 100,000 N R True True 17 180 0.00987 0.00217
PUT 5 100,000 N S True True 30 180 0.02535 0.00556
PUT 5 100,000 N T True True 11 180 0.00622 0.00106

aMonte Carlo simulation values benchmarked against semi-analytical values from Fourier-based pricing
approach. For the meaning of column headings refer to Table 10.1.

volatility (SV) model in combination with the CIR85 stochastic short rate (SI) model. This
model SVSI is a special case of the general market model BCC97 and exhibits risk-neutral
dynamics as follows:

dSt = rtStdt +
√

vtStdZ1
t

dvt = 𝜅v(𝜃v − vt)dt + 𝜎v
√

vtdZ2
t

drt = 𝜅r(𝜃r − rt)dt + 𝜎r
√

rtdZ3
t

The major algorithm we apply is the LSM of Longstaff-Schwartz (Longstaff and Schwartz,
2001). However, in addition to moment matching and antithetic variates, we introduce a further
variance reduction technique: control variates.
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The LSM estimator (7.15) provides us with an estimate for an American option’s value.
We correct this estimator by the simulated differences gained from a control variate. Consider
that we have simulated I paths of Xt = (St, vt, rt) to value an American put option with maturity
T and strike K. Then there are also I simulated present values of the corresponding European
put option. They are given by P0,i = B0(T)hT (XT ,i), i ∈ {1, ..., I}, with hT (x) ≡ max[K − x, 0].
The correction for the estimator (7.15) is as follows

V̂CV
0 = 1

I

I∑

i=1

(
V0,i − 𝜆 ⋅ (P0,i − PH93

0 )
)

(10.8)

For 𝜆 one can use the statistical correlation between the simulated European and American
option present values. However, results from a number of numerical experiments indicate that
simply setting 𝜆 ≡ 1 yields more accurate results in the test cases covered in this section.

10.4.1 Numerical Results

This sub-section presents numerical results from the simulation study based on American put
options as implemented in the Python script of sub-section 10.6.4.

Parametrized F inancia l Model We consider all model parametrizations for the H93 and
the CIR85 parts of the financial model from table 3 in Medvedev and Scaillet (2010). These
are four different parameter sets for the financial model.

Per parameter set, American put options for three different maturities and moneyness
levels, respectively, are valued:

� T ∈
{

1
12

, 1
4
, 1

2

}

� K ∈ {90, 100, 110}

All parameter sets and all values for the single options (for a total of 36 option values)
are included in the Python script provided in sub-section 10.6.4. The script uses all seven
discretization schemes for the square-root diffusions. With respect to the index process, it relies
on an additive version of the log Euler scheme. The script implements the LSM algorithm with
certain options to alter algorithm features (like control variates, moment matching or antithetic
paths).

To measure accuracy, we consider the absolute difference between our script’s values and
the benchmark values from Medvedev and Scaillet (2010). As benchmark values we take their
LSM estimates obtained by simulations with 50 exercise dates, 500 time steps and 1,000,000
paths. We say that our value estimates are accurate if the absolute difference is either smaller
than 2.5 cents or 1.5% (i.e. we take the same yardsticks as for the European options).

Medvedev and Scaillet (2010) derive in their paper approximations for American option
values under stochastic volatility (of H93 type) and stochastic interest rates (of CIR85 type)
which can be evaluated very fast. They write on page 16:

“To give an idea of the computational advantage of our method, a Matlab code imple-
menting the algorithm of Longstaff and Schwartz (2001) takes dozens of minutes
to compute a single option price while our approximation takes roughly a tenth of
a second.”
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Apart from accuracy, we therefore want to take a look at how fast we can value options
accurately with our Python implementation. This obviously is an important issue since “dozens
of minutes” per single option price are of course unacceptable for practical applications.

Example Results from Simulat ion A numerical experiment with 10 simulation runs—for
a total of 360 American put option values—yielded the following results (using control variate,
moment matching and antithetic paths techniques):

� discretization: Full Truncation
� time steps: 20
� paths: 20,000
� simulation runs: 10
� number of options: 360
� number of errors: 13
� average error: −0.00096
� total time: 29.18 seconds
� time per option: 0.08 seconds

Three hundred and forty-seven out of 360 American put options are valued accurately
given our yardsticks. The average valuation error is about −0.001 cents and therewith well
below 1 cent in absolute value. The average relative error is not quite representative since the
relative error for option values of about 0.01 cents easily reaches 100% and more. Nevertheless,
it is only about+4%. Average time per option is about 0.08 seconds—which has to be compared
with the “dozens of minutes” reported in Medvedev and Scaillet (2010). Our approach seems
to be 1,000+ times faster (if we assume a ‘single’ dozen of minutes) with an accurateness that
is consistent with a typical market microstructure.

Simulat ion Results Table 10.3 shows simulation results for different configurations of the
LSM algorithm. Each of the 36 options is valued five times making for a total of 180 option
valuations per configuration.

Interpretat ion of Results What are the reasons for the combination of reasonable accuracy
and valuation speed of the Python script? Actually, there are a number of reasons:

� implementation: the LSM algorithm has been implemented in Python using the fast
numerical library NumPy which runs at the speed of C code for certain operations; for
some applications this may be faster than Matlab or other domain-specific environments
like R

� discretization: we only use Euler discretization schemes which provide “sufficient”
accuracy at a high speed; we let the simulated index level paths according to (10.4) drift
step-by-step by the average of the two relevant short rate values

� control variates: the use of European put options as control variates (cf. Glasserman
(2004), sec. 4.1) is of high or even highest importance for variance reduction and accuracy
of the LSM estimator

� moment matching: we correct the set of standard normal pseudo-random numbers gener-
ated by Python to match the first two moments correctly (cf. Glasserman (2004), sec. 4.5),
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TABLE 10.3 Valuation results for American put options in H93 and CIR85 model for
parametrizations from Medvedev and Scaillet (2010). Performance yardsticks are PY1 = 0.025 and
PY1 = 0.015.a

R M I XD CV MM AP #ER #OP AE MSE

5 20 25,000 A True True True 1 180 −0.00117 0.00064
5 20 25,000 F True True True 1 180 −0.00105 0.00042
5 20 25,000 H True True True 5 180 0.00043 0.00046
5 20 25,000 P True True True 4 180 −0.00379 0.00047
5 20 25,000 R True True True 5 180 −0.00187 0.00058
5 20 25,000 S True True True 3 180 −0.00290 0.00044
5 20 25,000 T True True True 2 180 0.00072 0.00062
5 20 35,000 A True True True 1 180 −0.00836 0.00050
5 20 35,000 F True True True 1 180 −0.00289 0.00043
5 20 35,000 H True True True 5 180 −0.00205 0.00057
5 20 35,000 P True True True 4 180 −0.00328 0.00039
5 20 35,000 R True True True 4 180 −0.00543 0.00051
5 20 35,000 S True True True 2 180 −0.00408 0.00044
5 20 35,000 T True True True 2 180 −0.00283 0.00035
5 25 25,000 A True True True 2 180 −0.00171 0.00045
5 25 25,000 F True True True 1 180 0.00126 0.00039
5 25 25,000 H True True True 2 180 −0.00177 0.00043
5 25 25,000 P True True True 1 180 −0.00083 0.00037
5 25 25,000 R True True True 2 180 −0.00016 0.00059
5 25 25,000 S True True True 4 180 0.00044 0.00050
5 25 25,000 T True True True 3 180 −0.00173 0.00054
5 25 35,000 A True True True 2 180 −0.00162 0.00043
5 25 35,000 F True True True 1 180 −0.00135 0.00045
5 25 35,000 H True True True 2 180 −0.00166 0.00041
5 25 35,000 P True True True 1 180 −0.00199 0.00036
5 25 35,000 R True True True 0 180 −0.00436 0.00028
5 25 35,000 S True True True 5 180 −0.00429 0.00048
5 25 35000 T True True True 1 180 −0.00144 0.00045

aMonte Carlo simulation estimates benchmarked against LSM values from Medvedev and Scaillet (2010).
The columns report the following values: R = number of valuation runs, M = number of time steps, I =
number of paths per single option valuation, XD = (first letter of) discretization scheme for square-root
diffusions, CV = control variates, MM = moment matching, AP = antithetic paths, #OP = number of
options valued, #ER = number of errors out of #OP, AE = average error over all valuations, MSE =
mean squared error of all valuations.

i.e. the mean is adjusted to 0.0 and the standard deviation to 1.0; we also correct the first
moment of the simulated index level paths according to (10.4) step by step to account for
some remaining errors

� antithetic paths: as a general variance reduction technique we generate, as in Medvedev
and Scaillet (2010), antithetic paths (cf. Glasserman (2004), sec. 4.2) such that conver-
gence of the algorithm may improve somewhat
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� use of paths: we use only in-the-money paths such that both the estimation of the
regressions becomes faster (in particular for out-of-the-money options) and convergence
of the algorithm may improve

� basis functions: we use all in all ten different basis functions for the regressions in the
LSM implementation

� exercise at t = 0: we allow for exercise at t = 0 such that we get at least the inner value
as the option price for the in-the-money cases

� paths: our LSM implementation allows a significant reduction in the number of dis-
cretization intervals (25 instead of 500 as in Medvedev and Scaillet (2010)) and paths
(35,000 instead of 1,000,000); our approach reduces the number of necessary simulated
values by a factor of more than 500 and halves the number of regressions (25 exercise
dates instead of 50)

� recycling: we use the same set of random numbers for the 36 options to be valued per
simulation run; we also use the same simulated processes for each of the three options
per time-to-maturity

� hardware: of course, hardware also plays a role; the computational times reported for the
script are from a server with Intel Xeon CPU E3-1231 v3 @ 3.40GHz; Python 2.7 and
NumPy ran on a Linux 64 bit operating system; however, better hardware or parallelization
techniques could further speed up calculations

Importance of Algori thm Features In this sub-section, we report further simulation results
for variants of the LSM algorithm implementation. The aim is to identify those features of the
implementation that indeed contribute to accuracy. Using the same seed value for the Python
pseudo-random number generator, we replicate the 180 American option valuations several
times—changing, respectively, features of the algorithm implementation. Table 10.4 shows
the results.

It is obvious that the use of control variates is of paramount importance for accuracy. By
contrast, moment matching and antithetic variates may be beneficial or not (if at all, then on
a small scale). In view of the rather small additional computational time needed to include
control variates they should be used whenever possible in such a context.

10.4.2 Higher Accuracy vs. Lower Speed

In some circumstances, our yardsticks used to assess accuracy may be too lax. Even if only
for theoretical reasons, one might be interested in the LSM estimator (corrected with the help
of a control variate) being even closer to the true (i.e. theoretical) option value. To this end,
we set the performance yardsticks now to PY1 ≡ 0.01 currency units (i.e. 1%) and PY2 ≡ 0.01
(i.e. 1 percent). In particular, the 1 cent threshold is reasonable since it represents the smallest
currency unit in general. Therefore it is often used to judge accuracy. For example, Longstaff
and Schwartz (2001), p. 127, write: “Of the 20 differences shown in Table 1, 16 are less than
or equal to one cent in absolute value.”

To better meet the new yardsticks, we increase the number of time intervals to 50 as well
as the number of paths to 100,000 and 200,000, respectively. As the results in Table 10.5 show,
there are six valuation errors for the 180 options in the case of 50 time steps, 100,000 paths
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TABLE 10.4 Valuation results for American put options in H93 and CIR85 model for
parametrizations from Medvedev and Scaillet (2010). Performance yardsticks are PY1 = 0.025 and
PY1 = 0.015.a

R M I XD CV MM AP #ER #OP AE MSE

5 20 35,000 A False False False 54 180 −0.01504 0.00412
5 20 35,000 A False False True 42 180 −0.01279 0.00365
5 20 35,000 A False True False 43 180 −0.01126 0.00368
5 20 35,000 A False True True 42 180 −0.01366 0.00351
5 20 35,000 A True False False 0 180 −0.00319 0.00041
5 20 35,000 A True False True 2 180 −0.00594 0.00046
5 20 35,000 A True True False 1 180 −0.00364 0.00037
5 20 35,000 A True True True 0 180 −0.00499 0.00045
5 20 35,000 F False False False 44 180 −0.00894 0.00394
5 20 35,000 F False False True 43 180 −0.01226 0.00379
5 20 35,000 F False True False 42 180 −0.01283 0.00374
5 20 35,000 F False True True 46 180 −0.01179 0.00422
5 20 35,000 F True False False 4 180 −0.00525 0.00059
5 20 35,000 F True False True 3 180 −0.00366 0.00038
5 20 35,000 F True True False 2 180 −0.00416 0.00046
5 20 35,000 F True True True 2 180 −0.00618 0.00042
5 20 35,000 P False False False 45 180 −0.01272 0.00432
5 20 35,000 P False False True 44 180 −0.01313 0.00407
5 20 35,000 P False True False 42 180 −0.01241 0.00371
5 20 35,000 P False True True 41 180 −0.01339 0.00385
5 20 35,000 P True False False 3 180 −0.00337 0.00046
5 20 35,000 P True False True 4 180 −0.00540 0.00047
5 20 35,000 P True True False 1 180 −0.00322 0.00036
5 20 35,000 P True True True 3 180 −0.00154 0.00045
5 20 35,000 T False False False 53 180 −0.01329 0.00431
5 20 35,000 T False False True 40 180 −0.01140 0.00374
5 20 35,000 T False True False 42 180 −0.01210 0.00400
5 20 35,000 T False True True 42 180 −0.01345 0.00367
5 20 35,000 T True False False 1 180 −0.00513 0.00050
5 20 35,000 T True False True 1 180 −0.00530 0.00042
5 20 35,000 T True True False 3 180 −0.00479 0.00042
5 20 35,000 T True True True 2 180 −0.00446 0.00039

aMonte Carlo simulation estimates benchmarked against LSM values from Medvedev and Scaillet (2010).
For the meaning of column headings refer to Table 10.3.

and the Full Truncation scheme. The average valuation error in this case is around −0.5 cents.
However, further increasing the number of paths to 200,000 ceteris paribus does not guarantee
better valuation results, as is also illustrated in Table 10.5.

These results illustrate the trade-off between valuation accuracy and speed quite well. By
increasing the number of time intervals and paths per simulation, you can get closer to the true
(theoretical) value—just as the convergence results of Clément et al. (2002) imply. Longer
valuation times are the price to pay.
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TABLE 10.5 Valuation results for American put options in H93 and CIR85 model for
parametrizations from Medvedev and Scaillet (2010). Performance yardsticks are PY1 = 0.01 and
PY1 = 0.01.a

R M I XD CV MM AP #ER #OP AE MSE

5 20 35,000 A True True True 10 180 −0.00417 0.00038
5 20 35,000 F True True True 11 180 −0.00241 0.00043
5 20 35,000 P True True True 10 180 −0.00323 0.00051
5 20 35,000 T True True True 15 180 −0.00318 0.00051
5 20 100,000 A True True True 14 180 −0.00928 0.00048
5 20 100,000 F True True True 15 180 −0.00857 0.00033
5 20 100,000 P True True True 20 180 −0.00855 0.00047
5 20 100,000 T True True True 15 180 −0.00981 0.00047
5 20 200,000 A True True True 17 180 −0.00966 0.00040
5 20 200,000 F True True True 19 180 −0.01116 0.00044
5 20 200,000 P True True True 15 180 −0.01055 0.00043
5 20 200,000 T True True True 16 180 −0.01032 0.00041
5 50 35,000 A True True True 12 180 −0.00211 0.00040
5 50 35,000 F True True True 16 180 −0.00004 0.00048
5 50 35,000 P True True True 14 180 0.00020 0.00043
5 50 35,000 T True True True 15 180 −0.00258 0.00047
5 50 100,000 A True True True 7 180 −0.00478 0.00031
5 50 100,000 F True True True 6 180 −0.00536 0.00028
5 50 100,000 P True True True 7 180 −0.00657 0.00032
5 50 100,000 T True True True 9 180 −0.00591 0.00034
5 50 200,000 A True True True 7 180 −0.00783 0.00034
5 50 200,000 F True True True 7 180 −0.00720 0.00038
5 50 200,000 P True True True 3 180 −0.00709 0.00029
5 50 200,000 T True True True 9 180 −0.00743 0.00032

aMonte Carlo simulation values benchmarked against LSM values from Medvedev and Scaillet (2010).
For the meaning of column headings refer to Table 10.3.

10.5 CONCLUSIONS

Monte Carlo simulation is an indispensable tool for the valuation of non-vanilla equity deriva-
tives and for risk management purposes. However, even valuing simple products correctly by
simulation in more complex models—like the ones of CIR85, H93 or BCC97—is already a
daunting task. This chapter first shows how to correctly discretize the square-root diffusion
in the CIR85 model and value zero-coupon bonds numerically. It then proceeds and values
European call and put options in the H93 model where the variance process is discretized by a
Euler scheme—a total of seven schemes is implemented to allow for numerical comparisons.

Section 4 then adds the CIR85 short rate model to the H93 model to value American
put options by Monte Carlo simulation and the LSM algorithm. We show that our Python
implementation allows for quite fast valuations in this context—the script needs only about
a tenth of a second for a single option valuation. This is, among others, accomplished by the
use of three variance reduction techniques: control variates, moment matching and antithetic
paths. In this context, control variates play a dominant role in increasing valuation accuracy.
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10.6 PYTHON SCRIPTS

10.6.1 General Zero-Coupon Bond Valuat ion

#

# Valuation of Zero-Coupon Bonds

# in Cox-Ingersoll-Ross (1985) Model

# 09_gmm/CIR_zcb_valuation_gen.py

#

# (c) Dr. Yves J. Hilpisch

# Derivatives Analytics with Python

#

import math

import numpy as np

#

# Example Parameters CIR85 Model

#

r0, kappa_r, theta_r, sigma_r, t, T = 0.04, 0.3, 0.04, 0.1, 0.5, 5.0

#

# Zero-Coupon Bond Valuation Formula

#

def gamma(kappa_r, sigma_r):

''' Help Function. '''

return np.sqrt(kappa_r ** 2 + 2 * sigma_r ** 2)

def b1(alpha):

''' Help Function. '''

r0, kappa_r, theta_r, sigma_r, t, T = alpha

g = gamma(kappa_r, sigma_r)

return (((2 * g * np.exp((kappa_r + g) * (T - t) / 2)) /

(2 * g + (kappa_r + g) * (np.exp(g * (T - t)) - 1)))

** (2 * kappa_r * theta_r / sigma_r ** 2))

def b2(alpha):

''' Help Function. '''

r0, kappa_r, theta_r, sigma_r, t, T = alpha

g = gamma(kappa_r, sigma_r)

return ((2 * (np.exp(g * (T - t)) - 1)) /

(2 * g + (kappa_r + g) * (np.exp(g * (T - t)) - 1)))
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def B(alpha):

''' Function to value unit zero-coupon bonds in CIR85 Model.

Parameters

==========

r0: float

initial short rate

kappa_r: float

mean-reversion factor

theta_r: float

long-run mean of short rate

sigma_r: float

volatility of short rate

t: float

valuation date

T: float

time horizon/interval

Returns

=======

zcb_value: float

value of zero-coupon bond

'''

b_1 = b1(alpha)

b_2 = b2(alpha)

r0, kappa_r, theta_r, sigma_r, t, T = alpha

E_rt = theta_r + np.exp(-kappa_r * t) * (r0 - theta_r)

# expected value of r_t

zcb_value = b_1 * np.exp(-b_2 * E_rt)

return zcb_value

if __name__ == '__main__':

#

# Example Valuation

#

BtT = B([r0, kappa_r, theta_r, sigma_r, t, T])

# discount factor, ZCB value for t & T

print "ZCB Value %10.4f" % BtT

10.6.2 CIR85 Simulat ion and Valuat ion

#

# Valuation of Zero-Coupon Bonds by Monte Carlo Simulation

# in Cox-Ingersoll-Ross (1985) Model
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# 10_mcs/CIR_zcb_simulation.py

#

# (c) Dr. Yves J. Hilpisch

# Derivatives Analytics with Python

#

import math

import numpy as np

from CIR_zcb_valuation_gen import B

import matplotlib.pyplot as plt

import matplotlib as mpl

mpl.rcParams['font.family'] = 'serif'

from time import time

#

# Simulation of Square Root Diffusion

#

def CIR_generate_paths(x0, kappa, theta, sigma, T, M, I, x_disc='exact'):

''' Function to simulate Square-Root Difussion (SRD/CIR) process.

Parameters

==========

x0: float

initial value

kappa: float

mean-reversion factor

theta: float

long-run mean

sigma: float

volatility factor

T: float

final date/time horizon

M: int

number of time steps

I: int

number of paths

Returns

=======

x: NumPy array

simulated paths

'''

dt = T / M

x = np.zeros((M + 1, I), dtype=np.float)

x[0] = x0

xh = np.zeros_like(x)
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xh[0] = x0

ran = np.random.standard_normal((M + 1, I))

if x_disc is 'exact':

# exact discretization

d = 4 * kappa * theta / sigma ** 2

c = (sigma ** 2 * (1 - math.exp(-kappa * dt))) / (4 * kappa)

if d > 1:

for t in xrange(1, M + 1):

l = x[t - 1] * math.exp(-kappa * dt) / c

chi = np.ramdom.chisquare(d - 1, I)

x[t] = c * ((ran[t] + np.sqrt(l)) ** 2 + chi)

else:

for t in xrange(1, M + 1):

l = x[t - 1] * math.exp(-kappa * dt) / c

N = np.random.poisson(l / 2, I)

chi = np.random.chisquare(d + 2 * N, I)

x[t] = c * chi

else:

# Euler scheme (full truncation)

for t in xrange(1, M + 1):

xh[t] = (xh[t - 1] + kappa * (theta - np.maximum(0, xh[t - 1]))

* dt + np.sqrt(np.maximum(0, xh[t - 1]))

* sigma * ran[t] * math.sqrt(dt))

x[t] = np.maximum(0, xh[t])

return x

#

# Graphical Output of Simulated Paths

#

def plot_paths():

plt.figure(figsize=(9, 5))

plt.plot(range(len(r)), r[:, :20])

plt.grid()

plt.xlabel('time step')

plt.ylabel('short rate')

#

# Valuation of ZCB

#

def zcb_estimator(M=50, x_disc='exact'):

dt = T / M

r = CIR_generate_paths(r0, kappa_r, theta_r, sigma_r, T, M, I, x_disc)

zcb = np.zeros((M + 1, I), dtype=np.float)

zcb[-1] = 1.0 # final value
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for t in range(M, 0, -1):

zcb[t - 1] = zcb[t] * np.exp(-(r[t] + r[t - 1]) / 2 * dt)

return np.sum(zcb, axis=1) / I

#

# Graphical Value Comparison

#

def graphical_comparison(M=50, x_disc='exact'):

MCS_values = zcb_estimator(M, x_disc)

CIR_values = []

dt = T / M

t_list = np.arange(0.0, T + 0.001, dt) # dates of interest

for t in t_list:

alpha = r0, kappa_r, theta_r, sigma_r, t, T

CIR_values.append(B(alpha))

# CIR model values given date list

fig, ax = plt.subplots(2, sharex=True, figsize=(8, 6))

ax[0].plot(t_list, MCS_values, 'ro', label='MCS values')

ax[0].plot(t_list, CIR_values, 'b', label='CIR values')

ax[0].legend(loc=0)

ax[0].grid()

ax[0].set_ylim(min(CIR_values) - 0.005, max(CIR_values) + 0.005)

ax[0].set_ylabel('option values')

ax[0].set_title('maturity $T=2$')

ax[1].bar(t_list - 0.025 / 2., MCS_values - CIR_values,

width=0.025)

plt.ylabel('difference')

plt.xlim(min(t_list) - 0.1, max(t_list) + 0.1)

plt.xlabel('time $t$')

plt.tight_layout()

plt.grid()

if __name__ == '__main__':

#

# Model Parameters

#

r0, kappa_r, theta_r, sigma_r = [0.01, 0.1, 0.03, 0.2]

T = 2.0 # time horizon

M = 50 # time steps

dt = T / M

I = 50000 # number of MCS paths

np.random.seed(50000) # seed for RNG

r = CIR_generate_paths(r0, kappa_r, theta_r, sigma_r, T, M, I)
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10.6.3 Automated Valuat ion of European Opt ions by Monte
Carlo Simulat ion

#

# Valuation of European Options

# Under Heston (1993) Stochastic Volatility Model

# Comparison of Fourier-based Value and MCS Estimator

# 10_mcs/H93_european_mcs.py

#

# (c) Dr. Yves J. Hilpisch

# Derivatives Analytics with Python

#

import sys

sys.path.append('09_gmm/')

import math

import string

import numpy as np

np.set_printoptions(precision=3)

import pandas as pd

import itertools as it

from datetime import datetime

from time import time

from BCC_option_valuation import H93_call_value

# Fixed Short Rate

r = 0.05

# Heston (1993) Parameters

# from MS (2009), table 3

para = np.array(((0.01, 1.5, 0.15, 0.1), # panel 1

# (v0,kappa_v,sigma_v,rho)

(0.04, 0.75, 0.3, 0.1), # panel 2

(0.04, 1.50, 0.3, 0.1), # panel 3

(0.04, 1.5, 0.15, -0.5))) # panel 4

theta_v = 0.02 # long-term variance level

S0 = 100.0 # initial index level

# General Simulation Parameters

write = True

verbose = False

option_types = ['CALL', 'PUT'] # option types

steps_list = [25, 50] # time steps p.a.

paths_list = [25000, 50000, 75000, 100000] # number of paths per valuation

s_disc_list = ['Log', 'Naive'] # Euler scheme: log vs. naive

x_disc_list = ['Full Truncation', 'Partial Truncation', 'Truncation',
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'Absorption', 'Reflection', 'Higham-Mao', 'Simple Reflection']

# discretization schemes for SRD process

anti_paths = [False, True]

# antithetic paths for variance reduction

moment_matching = [False, True]

# random number correction (std + mean + drift)

t_list = [1.0 / 12, 1.0, 2.0] # maturity list

k_list = [90, 100, 110] # strike list

PY1 = 0.025 # performance yardstick 1: abs. error in currency units

PY2 = 0.015 # performance yardstick 2: rel. error in decimals

runs = 5 # number of simulation runs

np.random.seed(250000) # set RNG seed value

#

# Function for Short Rate and Volatility Processes

#

def SRD_generate_paths(x_disc, x0, kappa, theta, sigma,

T, M, I, rand, row, cho_matrix):

''' Function to simulate Square-Root Diffusion (SRD/CIR) process.

Parameters

==========

x0: float

initial value

kappa: float

mean-reversion factor

theta: float

long-run mean

sigma: float

volatility factor

T: float

final date/time horizon

M: int

number of time steps

I: int

number of paths

row: int

row number for random numbers

cho_matrix: NumPy array

Cholesky matrix

Returns

=======
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x: NumPy array

simulated variance paths

'''

dt = T / M

x = np.zeros((M + 1, I), dtype=np.float)

x[0] = x0

xh = np.zeros_like(x)

xh[0] = x0

sdt = math.sqrt(dt)

for t in xrange(1, M + 1):

ran = np.dot(cho_matrix, rand[:, t])

if x_disc == 'Full Truncation':

xh[t] = (xh[t - 1] + kappa * (theta -

np.maximum(0, xh[t - 1])) * dt +

np.sqrt(np.maximum(0, xh[t - 1])) * sigma * ran[row] * sdt)

x[t] = np.maximum(0, xh[t])

elif x_disc == 'Partial Truncation':

xh[t] = (xh[t - 1] + kappa * (theta - xh[t - 1]) * dt +

np.sqrt(np.maximum(0, xh[t - 1])) * sigma * ran[row] * sdt)

x[t] = np.maximum(0, xh[t])

elif x_disc == 'Truncation':

x[t] = np.maximum(0, x[t - 1]

+ kappa * (theta - x[t - 1]) * dt +

np.sqrt(x[t - 1]) * sigma * ran[row] * sdt)

elif x_disc == 'Reflection':

xh[t] = (xh[t - 1]

+ kappa * (theta - abs(xh[t - 1])) * dt +

np.sqrt(abs(xh[t - 1])) * sigma * ran[row] * sdt)

x[t] = abs(xh[t])

elif x_disc == 'Higham-Mao':

xh[t] = (xh[t - 1] + kappa * (theta - xh[t - 1]) * dt +

np.sqrt(abs(xh[t - 1])) * sigma * ran[row] * sdt)

x[t] = abs(xh[t])

elif x_disc == 'Simple Reflection':

x[t] = abs(x[t - 1] + kappa * (theta - x[t - 1]) * dt +

np.sqrt(x[t - 1]) * sigma * ran[row] * sdt)

elif x_disc == 'Absorption':

xh[t] = (np.maximum(0, xh[t - 1])

+ kappa * (theta - np.maximum(0, xh[t - 1])) * dt +

np.sqrt(np.maximum(0, xh[t - 1])) * sigma * ran[row] * sdt)

x[t] = np.maximum(0, xh[t])

else:

print x_disc

print "No valid Euler scheme."

sys.exit(0)

return x
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#

# Function for Heston Index Process

#

def H93_generate_paths(S0, r, v, row, cho_matrix):

''' Simulation of Heston (1993) index process.

Parameters

==========

S0: float

initial value

r: float

constant short rate

v: NumPy array

simulated variance paths

row: int

row/matrix of random number array to use

cho_matrix: NumPy array

Cholesky matrix

Returns

=======

S: NumPy array

simulated index level paths

'''

S = np.zeros((M + 1, I), dtype=np.float)

S[0] = S0

bias = 0.0

sdt = math.sqrt(dt)

for t in xrange(1, M + 1, 1):

ran = np.dot(cho_matrix, rand[:, t])

if momatch:

bias = np.mean(np.sqrt(v[t]) * ran[row] * sdt)

if s_disc == 'Log':

S[t] = S[t - 1] * np.exp((r - 0.5 * v[t]) * dt +

np.sqrt(v[t]) * ran[row] * sdt - bias)

elif s_disc == 'Naive':

S[t] = S[t - 1] * (math.exp(r * dt) +

np.sqrt(v[t]) * ran[row] * sdt - bias)

else:

print "No valid Euler scheme."

exit(0)

return S

def random_number_generator(M, I):

''' Function to generate pseudo-random numbers.
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Parameters

==========

M: int

time steps

I: int

number of simulation paths

Returns

=======

rand: NumPy array

random number array

'''

if antipath:

rand = np.random.standard_normal((2, M + 1, I / 2))

rand = np.concatenate((rand, -rand), 2)

else:

rand = np.random.standard_normal((2, M + 1, I))

if momatch:

rand = rand / np.std(rand)

rand = rand - np.mean(rand)

return rand

#

# Valuation

#

t0 = time()

results = pd.DataFrame()

tmpl_1 = '%4s | %3s | %6s | %6s | %6s | %6s | %5s | %5s' \
% ('T', 'K', 'V0', 'V0_MCS', 'err', 'rerr', 'acc1', 'acc2')

tmpl_2 = '%4.3f | %3d | %6.3f | %6.3f | %6.3f | %6.3f | %5s | %5s'

if __name__ == '__main__':

for alpha in it.product(option_types, steps_list, paths_list, s_disc_list,

x_disc_list, anti_paths, moment_matching):

print '\n\n', alpha, '\n'
option, M0, I, s_disc, x_disc, antipath, momatch = alpha

for run in range(runs):

for panel in range(4):

# Correlation Matrix

v0, kappa_v, sigma_v, rho = para[panel]

covariance_matrix = np.zeros((2, 2), dtype=np.float)

covariance_matrix[0] = [1.0, rho]

covariance_matrix[1] = [rho, 1.0]
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cho_matrix = np.linalg.cholesky(covariance_matrix)

if verbose:

print "nResults for Panel %dn" % (panel + 1)

print tmpl_1

for T in t_list: # maturity list

# memory clean-up

v, S, rand, h = 0.0, 0.0, 0.0, 0.0

M = int(M0 * T) # number of total time steps

dt = T / M # time interval in years

# random numbers

rand = random_number_generator(M, I)

# volatility process paths

v = SRD_generate_paths(x_disc, v0, kappa_v, theta_v,

sigma_v, T, M, I, rand, 1, cho_matrix)

# index level process paths

S = H93_generate_paths(S0, r, v, 0, cho_matrix)

for K in k_list:

# European option values

B0T = math.exp(-r * T) # discount factor

# European call option value (semi-analytical)

C0 = H93_call_value(S0, K, T, r, kappa_v,

theta_v, sigma_v, rho, v0)

P0 = C0 + K * B0T - S0

if option is 'PUT':

# benchmark value

V0 = P0

# inner value matrix put

h = np.maximum(K - S, 0)

elif option is 'CALL':

# benchmark value

V0 = C0

# inner value matrix call

h = np.maximum(S - K, 0)

else:

print "No valid option type."

sys.exit(0)

pv = B0T * h[-1] # present value vector

V0_MCS = np.sum(pv) / I # MCS estimator

SE = np.std(pv) / math.sqrt(I)

# standard error

error = V0_MCS - V0

rel_error = (V0_MCS - V0) / V0

PY1_acc = abs(error) < PY1

PY2_acc = abs(rel_error) < PY2

res = pd.DataFrame({'timestamp': datetime.now(),

'otype': option, 'runs': runs, 'steps': M0,

'paths': I, 'index_disc': s_disc,

'var_disc': x_disc, 'anti_paths': antipath,
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'moment_matching': momatch, 'panel': panel,

'maturity': T, 'strike': K, 'value': V0,

'MCS_est': V0_MCS, 'SE': SE, 'error': error,

'rel_error': rel_error, 'PY1': PY1, 'PY2': PY2,

'PY1_acc': PY1_acc, 'PY2_acc': PY2_acc,

'PY_acc': PY1_acc or PY2_acc},

index=[0,])

if verbose:

print tmpl_2 % (T, K, V0, V0_MCS, error,

rel_error, PY1_acc, PY2_acc)

results = results.append(res, ignore_index=True)

if write:

d = str(datetime.now().replace(microsecond=0))

d = d.translate(string.maketrans("-:", "__"))

h5 = pd.HDFStore('10_mcs/mcs_european_%s_%s.h5'

% (d[:10], d[11:]), 'w')

h5['results'] = results

h5.close()

print "Total time in minutes %8.2f" % ((time() - t0) / 60)

10.6.4 Automated Valuat ion of American Put Opt ions by
Monte Carlo Simulat ion

#

# Script for American Put Option Valuation by MCS/LSM

# in H93 and CIR85 model

#

# Examples from Medvedev & Scaillet (2010):

# "Pricing American Options Under Stochastic Volatility

# and Stochastic Interest Rates."

#

# 10_mcs/SVSI_american_mcs.py

#

# (c) Dr. Yves J. Hilpisch

# Derivatives Analytics with Python

#

import gc

import sys

sys.path.append('09_gmm/')

import math

import string
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import numpy as np

import pandas as pd

import itertools as it

from datetime import datetime

from BCC_option_valuation import H93_call_value

from H93_european_mcs import SRD_generate_paths

from CIR_zcb_valuation_gen import B

from time import time

# 'True' American Options Prices by Monte Carlo

# from MS (2009), table 3

benchmarks = np.array(((0.0001, 1.0438, 9.9950, 0.0346, 1.7379, 9.9823,

0.2040, 2.3951, 9.9726), # panel 1

(0.0619, 2.1306, 10.0386, 0.5303, 3.4173, 10.4271,

1.1824, 4.4249, 11.0224), # panel 2

(0.0592, 2.1138, 10.0372, 0.4950, 3.3478, 10.3825,

1.0752, 4.2732, 10.8964), # panel 3

(0.0787, 2.1277, 10.0198, 0.6012, 3.4089, 10.2512,

1.2896, 4.4103, 10.6988))) # panel 4

# Cox, Ingersoll, Ross (1985) Parameters

# from MS (2009), table 3, panel 1

r0 = 0.04

kappa_r = 0.3

theta_r = 0.04

sigma_r = 0.1

# Heston (1993) Parameters

# from MS (2009), table 3

para = np.array(((0.01, 1.50, 0.15, 0.10), # panel 1

# (v0, kappa_v, sigma_v, rho)

(0.04, 0.75, 0.30, 0.10), # panel 2

(0.04, 1.50, 0.30, 0.10), # panel 3

(0.04, 1.50, 0.15, -0.50))) # panel 4

theta_v = 0.02 # long-term variance level

S0 = 100.0 # initial index level

D = 10 # number of basis functions

# General Simulation Parameters

write = True

verbose = False

py_list = [(0.025, 0.015)] # , (0.01, 0.01)]

# combinations of performance yardsticks (absolute, relative)

# performance yardstick 1: abs. error in currency units

# performance yardstick 2: rel. error in decimals
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m_list = [20, 25] # number of time intervals

paths_list = [25000, 35000] # number of paths per valuation

x_disc_list = ['Full Truncation', 'Partial Truncation', 'Truncation',

'Absorption', 'Reflection', 'Higham-Mao', 'Simple Reflection']

# discretization schemes for SRD process

control_variate = [False, True]

# use of control variate

anti_paths = [False, True]

# antithetic paths for variance reduction

moment_matching = [False, True]

# random number correction (std + mean + drift)

t_list = [1.0 / 12, 0.25, 0.5] # maturity list

k_list = [90., 100., 110.] # strike list

runs = 5 # number of simulation runs

np.random.seed(250000) # set RNG seed value

#

# Function for Heston Index Process

#

def H93_index_paths(S0, r, v, row, cho_matrix):

''' Simulation of the Heston (1993) index process.

Parameters

==========

S0: float

initial value

r: NumPy array

simulated short rate paths

v: NumPy array

simulated variance paths

row: int

row/matrix of random number array to use

cho_matrix: NumPy array

Cholesky matrix

Returns

=======

S: NumPy array
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simulated index level paths

'''

sdt = math.sqrt(dt)

S = np.zeros((M + 1, I), dtype=np.float)

S[0] = math.log(S0)

for t in xrange(1, M + 1, 1):

ran = np.dot(cho_matrix, rand[:, t])

S[t] += S[t - 1]

S[t] += ((r[t] + r[t - 1]) / 2 - v[t] / 2) * dt

S[t] += np.sqrt(v[t]) * ran[row] * sdt

if momatch is True:

S[t] -= np.mean(np.sqrt(v[t]) * ran[row] * sdt)

return np.exp(S)

def random_number_generator(M, I):

''' Function to generate pseudo-random numbers.

Parameters

==========

M: int

time steps

I: int

number of simulation paths

Returns

=======

rand: NumPy array

random number array

'''

if antipath:

rand = np.random.standard_normal((3, M + 1, I / 2))

rand = np.concatenate((rand, -rand), 2)

else:

rand = np.random.standard_normal((3, M + 1, I))

if momatch:

rand = rand / np.std(rand)

rand = rand - np.mean(rand)

return rand

#

# Valuation

#

t0 = time()

results = pd.DataFrame()
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tmpl_1 = '%5s | %3s | %6s | %6s | %6s | %6s | %6s | %6s | %6s | %5s | %5s'

tmpl_2 = '%4.3f | %3d ' + 7 * '| %6.3f ' + '| %5s | %5s'

for alpha in it.product(py_list, x_disc_list, m_list, paths_list,

control_variate, anti_paths, moment_matching):

print '\n\n', alpha, '\n'
(PY1, PY2), x_disc, M, I, convar, antipath, momatch = alpha

for run in xrange(runs): # simulation runs

for panel in xrange(4): # panels

if verbose:

print "\nResults for Panel %d\n" % (panel + 1)

print tmpl_1 % ('T', 'K', 'V0', 'V0_LSM', 'V0_CV', 'P0',

'P0_MCS', 'err', 'rerr', 'acc1', 'acc2')

# correlation matrix, cholesky decomposition

v0, kappa_v, sigma_v, rho = para[panel]

correlation_matrix = np.zeros((3, 3), dtype=np.float)

correlation_matrix[0] = [1.0, rho, 0.0]

correlation_matrix[1] = [rho, 1.0, 0.0]

correlation_matrix[2] = [0.0, 0.0, 1.0]

cho_matrix = np.linalg.cholesky(correlation_matrix)

z = 0 # option counter

S, r, v, h, V, matrix = 0, 0, 0, 0, 0, 0

gc.collect()

for T in t_list: # times-to-maturity

# discount factor

B0T = B([r0, kappa_r, theta_r, sigma_r, 0.0, T])

# average constant short rate/yield

ra = -math.log(B0T) / T

# time interval in years

dt = T / M

# pseudo-random numbers

rand = random_number_generator(M, I)

# short rate process paths

r = SRD_generate_paths(x_disc, r0, kappa_r, theta_r,

sigma_r, T, M, I, rand, 0, cho_matrix)

# volatility process paths

v = SRD_generate_paths(x_disc, v0, kappa_v, theta_v,

sigma_v, T, M, I, rand, 2, cho_matrix)

# index level process paths

S = H93_index_paths(S0, r, v, 1, cho_matrix)

for K in k_list: # strikes

# inner value matrix

h = np.maximum(K - S, 0)

# value/cash flow matrix

V = np.maximum(K - S, 0)
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for t in xrange(M - 1, 0, -1):

df = np.exp(-(r[t] + r[t + 1]) / 2 * dt)

# select only ITM paths

itm = np.greater(h[t], 0)

relevant = np.nonzero(itm)

rel_S = np.compress(itm, S[t])

no_itm = len(rel_S)

if no_itm == 0:

cv = np.zeros((I), dtype=np.float)

else:

rel_v = np.compress(itm, v[t])

rel_r = np.compress(itm, r[t])

rel_V = (np.compress(itm, V[t + 1])

* np.compress(itm, df))

matrix = np.zeros((D + 1, no_itm), dtype=np.float)

matrix[10] = rel_S * rel_v * rel_r

matrix[9] = rel_S * rel_v

matrix[8] = rel_S * rel_r

matrix[7] = rel_v * rel_r

matrix[6] = rel_S ** 2

matrix[5] = rel_v ** 2

matrix[4] = rel_r ** 2

matrix[3] = rel_S

matrix[2] = rel_v

matrix[1] = rel_r

matrix[0] = 1

reg = np.linalg.lstsq(matrix.transpose(), rel_V)

cv = np.dot(reg[0], matrix)

erg = np.zeros((I), dtype=np.float)

np.put(erg, relevant, cv)

V[t] = np.where(h[t] > erg, h[t], V[t + 1] * df)

# final discounting step

df = np.exp(-(r[0] + r[1]) / 2 * dt)

## European Option Values

C0 = H93_call_value(S0, K, T, ra, kappa_v,

theta_v, sigma_v, rho, v0)

P0 = C0 + K * B0T - S0

P0_MCS = B0T * np.sum(h[-1]) / I

x = B0T * h[-1]

y = V[1] * df

## Control Variate Correction

if convar is True:
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# statistical correlation

b = (np.sum((x - np.mean(x)) * (y - np.mean(y)))

/ np.sum((x - np.mean(x)) ** 2))

# correction

y_cv = y - 1.0 * (B0T * h[-1] - P0)

# set b instead of 1.0

# to use stat. correlation

else:

y_cv = y

# standard error

SE = np.std(y_cv) / math.sqrt(I)

# benchmark value

V0 = benchmarks[panel, z]

# LSM control variate

V0_CV = max(np.sum(y_cv) / I, h[0, 0])

# pure LSM

V0_LSM = max(np.sum(y) / I, h[0, 0])

## Errors

error = V0_CV - V0

rel_error = error / V0

PY1_acc = abs(error) < PY1

PY2_acc = abs(rel_error) < PY2

res = pd.DataFrame({'timestamp': datetime.now(),

'runs': runs, 'PY1': PY1, 'PY2': PY2,

'var_disc': x_disc, 'steps': M, 'paths': I,

'control_variate': convar, 'anti_paths': antipath,

'moment_matching': momatch, 'panel': panel,

'maturity': T, 'strike': K, 'benchmark': V0,

'V0_euro': P0, 'MCS_euro': P0_MCS,

'LSM_pure': V0_LSM, 'LSM_convar': V0_CV,

'SE': SE, 'error': error, 'rel_error': rel_error,

'PY1_acc': PY1_acc, 'PY2_acc': PY2_acc,

'PY_acc': PY1_acc or PY2_acc},

index=[0,])

z += 1 # option counter

if verbose:

print tmpl_2 % (T, K, V0, V0_LSM, V0_CV, P0,

P0_MCS, error, rel_error, PY1_acc, PY2_acc)

results = results.append(res, ignore_index=True)

if write:

d = str(datetime.now().replace(microsecond=0))

d = d.translate(string.maketrans("-:", "__"))
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h5 = pd.HDFStore('10_mcs/mcs_american_%s_%s.h5' % (d[:10], d[11:]), 'w')

h5['results'] = results

h5.close()

print "Total time in minutes %8.2f" % ((time() - t0) / 60)



CHAPTER 11
Model Calibration

11.1 INTRODUCTION

Historically, theoretical valuation has been seen as a process where a number of input param-
eters of a model or formula determine the price/value of a derivative instrument. The fun-
damental assumption behind this reasoning is that you can observe, in principle, anything in
the markets that finally determines the price/value of a security—markets should be, after all,
informationally efficient. A major example is the Black-Scholes-Merton formula which takes
as input six variables—initial price level of the underlying, the underlying’s volatility, the
strike price of the option at hand, time-to-maturity, short rate and maybe dividends paid by the
underlying. If you put in numerical values for the six variables, the formula returns a value for
the option at hand.

However, if “the market is always right”, what does a model price/value mean which
deviates from an observable market value? As earlier chapters discuss, market-based valuation
refers to the process where more complex derivatives are valued “in consistency” with observed
market prices of plain vanilla derivatives. Therefore, today’s valuation practice requires in the
first place that valuation models be capable of replicating observed market values of vanilla
products sufficiently well.

This chapter is concerned with the calibration of the general market model to observed
market quotes for such vanilla products, i.e. European call options in particular. In comparison
to the historical approach, instrument prices/values are not the objective of the effort in the
first place. The objective is rather to get a parameter set for a certain model that leads to
market-consistent values for vanilla products. In that sense, the whole theoretical valuation
procedure is turned upside down.

Section 11.2 concerns itself with some fundamental questions in the context of model
calibration (like which market data to use). Section 11.3 calibrates the CIR85 short rate model
to the Euribor term structure. Finally, section 11.4 implements a calibration procedure for the
equity component of the BCC97 model, based on EURO STOXX 50 European call option
quotes. As before, a complete set of self-contained Python scripts is provided.

11.2 GENERAL CONSIDERATIONS

In Chapter 8 calibration is done “ad hoc”. However, when calibrating a financial market
model, fundamental questions arise that have to be carefully addressed. This sub-section
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briefly discusses the most important ones against the background of the book’s main
objectives.

11.2.1 Why Cal ibrat ion at Al l?

In a narrow sense (i.e. in the theory of continuous processes), market incompleteness implies
that a given derivative asset cannot be replicated perfectly by trading in its underlying(s) (cf.
Björk (2004), ch. 8 and ch. 15). In a wider sense (i.e. in the theory of processes with jumps),
market incompleteness implies that a given derivative asset cannot be replicated perfectly even
if trading in all available (derivative) assets is allowed (cf. Cont and Tankov (2004a), ch. 9
and ch. 10).

Regarding the special cases of the general market model 
BCC97, one can say the

following. The model of BSM is complete. The model of H93 is incomplete in a narrow sense
but complete in a wider sense since a derivative asset generally can be replicated by trading
in both the underlying and another derivative asset.1 The model of M76 is incomplete even
in a wider sense which is due to the jump component having stochastic jump size. To hedge
jump risk perfectly, an over-countably infinite number of traded assets would be necessary;
of course something not found, neither in practice nor in theory. As Tankov and Voltchkova
(2009), p. 16, point out:

“Since typically the jump size is not known in advance, the risk associated to jumps
cannot be hedged away completely: we are in an incomplete market. In this setting,
the hedging becomes an approximation problem: instead of replicating an option,
one tries to minimize the residual hedging error.”

As a consequence, the model of BCC97 is incomplete in a wider sense, implying that
perfect hedges are not possible. Formally speaking, incompleteness leads to non-uniqueness
of the risk-neutral probability measure Q and to multiple prices of derivative assets consistent
with the absence of arbitrage. A simple example illustrates this insight.

Example 4 (Incomplete Market). Consider a simple financial market with two dates
t ∈ {0, 1} and three states of the economy tomorrow, i.e. at t = 1, which occur with equal
probability. There are two assets. First, a risk-less bond Bt which pays tomorrow B1 = 10
units of currency for sure and whose price today is B0 = 10 = (1 + r)−1 ⋅ B1 such that r = 0.0.
Second, a risky security, called the index, which costs S0 = 10 today and pays tomorrow

S1 =
⎛
⎜
⎜
⎝

20
10
0

⎞
⎟
⎟
⎠

By standard results from linear algebra, the financial market is incomplete (in a narrow
sense) since not every payoff at t = 1 can be replicated via trading in the available securities.2

1Roughly speaking, there are two sources of risk in H93—index risk and volatility risk—such that one
needs (at least) two instruments to hedge away all risk.
2Two linearly independent vectors are not enough to form a basis of the R3. At least three are necessary.
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Consider now the derivative asset

A1 =
⎛
⎜
⎜
⎝

16
4
0

⎞
⎟
⎟
⎠

which should be valued. Simple calculations show that perfect replication is not possible.
However, absence of arbitrage must hold such that there exists by the Fundamental Theorem
of Asset Pricing (cf. Theorem 1 in Chapter 4 or Björk (2004), p. 29) a martingale measure Q
such that

EQ
0 (S1t) = S0

⇒ q1 ⋅ 20 + q2 ⋅ 10 + q3 ⋅ 0 = 10

⇔ q2 = 1 − 2 ⋅ q1

with qs
> 0 and q1 + q2 + q3 = 1 for Q to be a (risk-neutral) probability measure. One gets

q1 + (1 − 2 ⋅ q1) + q3 = 1

⇔ q3 = q1

As a consequence, every risk-neutral probability measure from the set

Q =
⎧
⎪
⎨
⎪
⎩

Q ∈ R3
++ :

⎛
⎜
⎜
⎝

q1

q2

q3

⎞
⎟
⎟
⎠

≡

⎛
⎜
⎜
⎝

𝜈

1 − 2𝜈
𝜈

⎞
⎟
⎟
⎠

, 0 < 𝜈 <

1
4

⎫
⎪
⎬
⎪
⎭

makes the index a martingale consistent with the absence of arbitrage. Also, every price A0 of
the derivative asset A1 which lies in the open interval ]A0, A0[ with

A0 ≡ EQ(𝜈=0)[A1] = 4.0

and

A0 ≡ EQ(𝜈=0.25)[A1] = 1 + 8 = 9.0

is consistent with the absence of arbitrage.

Market incompleteness leaves one with the unsatisfactory situation that there are multiple
prices for derivative assets. To resolve this problem, calibration comes into play. Because
there is, in general, no simple criterion to choose among the possible risk-neutral probability
measures, one has to ask the market for the right one—this is what calibration is about. Or as
Björk (2004), p. 221, puts it: “Question: Who chooses the martingale measure? … Answer:
The market!”

Therefore, calibration yields the market-consistent risk-neutral probability measure in the
sense that (i) liquidly traded plain vanilla options are priced correctly and (ii) other (exotic)
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derivatives are priced such that prices are both consistent with the absence of arbitrage and
indeed unique.

11.2.2 Which Role Do Di f ferent Model Components Play?

Formally speaking, calibration means to find parameters for a given model such that it is
market-consistent as explained before. Chapter 8 shows that the model of M76 is not capable
of perfectly replicating prices for multiple strikes and maturities. However, for the short
maturity and a subset of option prices the fit is pretty good. Therefore, the jump component
of the general model of BCC97 will take care of short-term option prices. On the other hand,
it is well-known (cf. Gatheral (2006), ch. 3) that the model of H93 is capable of replicating
option prices of longer maturities pretty well. Therefore, when calibrating a financial market
model simultaneously to short as well as longer maturities one needs both a jump component
and stochastic volatility. Gallucio and Le Cam (2008), p. 9, conclude:

“… no matter how parameters are chosen, it is impossible to make a pure [stochastic
volatility] or jumps model consistent with the observed shape of the smile … This
further reinforces the view that option markets are consistent with the simultaneous
presence of both jumps and stochastic volatility in the asset dynamics.”

The model of B96 is one of the simplest to accommodate both jumps and stochastic
volatility.3 Its attractiveness further stems from the fact that the two sub-models, H93 and
M76, are well understood and widely applied in theory and practice.

What about stochastic short rates? It is well-known that the impact of short rate volatility
is almost negligible when calibrating models to short maturity option prices (cf. Bakshi et al.
(1997)). However, the longer the maturities become the more important becomes short rate
volatility such that it obviously cannot be neglected in the context of equity derivatives—which
can have pretty long maturities.4

Stochastic short rates play a dual role in the general market model. First, they are important
factors in the risk-neutral valuation and hedging of derivative assets in general. Second, they are
central for determining present values of deterministic cash flows, like, for instance, liabilities
or cash flows from bonds. Again, the model of CIR85 is well understood and widely applied
(cf. Björk (2004), ch. 22, or Brigo and Mercurio (2006)) and therefore an obvious choice.

The short rate model is to be calibrated to the term structure of interest rates such that it is
replicated reasonably well and short rate sensitive instruments, like bonds, options on bonds
or swaptions are correctly priced. Due to the zero correlation between the short rate and the
index model, the task of calibrating the general model can be separated in two independent
procedures.

3There exist richer models that allow, among others, for time-dependent parameters (cf. Galluccio and
Le Cam (2008)), jumps in the volatility process (cf. Duffie et al. (2000)) or generalizations of the H93
volatility process (cf. Grzelak et al. (2012)).
4Many life insurance products, like variable annuities with guarantee components, have features that
resemble typical equity derivatives. This requires that they be valued/priced accordingly as well as
hedged like equity derivatives by the insurance company. Such products tend to have relatively long
maturities typically well beyond 10 years and up to 30 years.
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11.2.3 What Object ive Funct ion?

To calibrate a financial market model, one needs a performance yardstick for the quality of
the calibration—formally, an objective or error function which is to be minimized. In general,
model selection and selection of an objective or error function are treated as separate tasks.
However, as Christoffersen and Jacobs (2004), pp. 314–315, point out:

“The key is that one should stop thinking of the specification of a theoretical model
as separate from the choice of the loss function. When operationalizing a determin-
istic theoretical model, whether for estimation or evaluation purposes, one has to
impose a statistical structure. This statistical structure is an integral part of empirical
model specification, and the choice of loss function is a major part of the statistical
structure.”

A multitude of candidate objective functions is available, three of which Christoffersen
and Jacobs analyze in detail:

� mean squared error (MSE) of the price differences in currency units
� MSE of the relative price differences
� MSE of the implied volatility differences

They identify these to be among the most commonly used in the literature. The first one takes
on the form

min
p

1
N

N∑

n=1

(
C∗

n − Cmod
n (p)

)2
(11.1)

with the C∗
n being the market or input prices and the Cmod

n being the model or output prices
for options n = 1,… , N given parameter vector p. For example, Bakshi et al. (1997) and
Reinsberg (2006) use this particular function for the calibration. The second one is similar but
includes a scaling term

min
p

1
N

N∑

n=1

(
C∗

n − Cmod
n (p)

C∗
n

)2

(11.2)

Finally, the third one resembles the first one with the option prices replaced by the implied
volatilities

min
p

1
N

N∑

n=1

(
𝜎
∗
n − 𝜎

mod
n (p)

)2
(11.3)

Here, 𝜎∗n is the volatility that gives a BSM option value equal to C∗
n and 𝜎

mod
n analogous. These

values are called market and model implied volatilities, respectively.
Christoffersen and Jacobs (2004) stress that the choice of an objective function for

calibration purposes should take into account the specific objective itself (e.g. valuation,



228 DERIVATIVES ANALYTICS WITH PYTHON

hedging, speculation). Although they do not favor one function over another, they find that
their “… results indicate that the $MSE estimates perform the best across different loss func-
tions. The $MSE may thus serve as a good general-purpose loss function in option valuation
applications” (p. 316). By $MSE they mean function (11.1).

Regarding functions (11.1)–(11.3) it is not uncommon to include a square root to obtain
RMSE instead of MSE (cf. Chapter 8 function (8.4); Schoutens et al. (2004) also use RMSE
alongside other candidate functions). Also, some authors include weighting terms (like vega,
bid-ask spread or implied volatility of the respective option), cf. Cont and Tankov (2004b)
and Detlefsen (2005), to avoid biases due to the error function specification.5 Additionally,
it cannot be excluded that the function to be minimized has multiple local minima such that
it is not assured that—depending on the optimization algorithm—the global minimum is
identified. Some regularization procedure might be necessary in such a case (cf. Cont and
Tankov (2004b), Galluccio and Le Cam (2008)).

Often the implied volatilities are the target of the calibration procedure. This chapter
illustrates this approach as well, making use of a variant of function (11.3). In particular, we
use the following error function specification:

min
p

1
N

N∑

n=1

(
(
𝜎
∗
n − 𝜎

mod
n (p)

)
⋅
𝜕CBSM

n

𝜕𝜎
∗
n

)2

(11.4)

Here, the differences between the model and market implied volatilities are respectively
weighted by the vega of the Black-Scholes-Merton option price at the market implied volatility.
This approach takes into account how sensitive vanilla options are with respect to changes in
volatility for different strikes and maturities. A look at Figure 5.7 in Chapter 5 reveals that
vega in general increases with closeness to the ATM strike level and with longer maturities.
This error function specification therefore gives, for example, less weight to implied volatility
differences for short-term far ITM or OTM options.

In this chapter, function (11.1) is used throughout for the calibration to market quotes
since this specification is in line with the main objective “valuation” and since corresponding
numerical results are accurate enough in view of the chapter’s general scope.6 When calibrating
to implied volatilites—with the main objective, for example, being “hedging”—function (11.4)
is used.

11.2.4 What Market Data?

The first question regarding market data of course is what the relevant index is when analyzing
equity index derivatives. This generally is pretty easy to answer; S&P 500, EURO STOXX
50, DAX or SMI could be candidates. The second is also relatively easy: which interest
rates, yields, bond prices, etc. to use for the calibration of the short rate model. The third—
more difficult to answer—question is about the concrete option quotes to be included in the

5For example, in function (11.1) options with high prices possibly gain too much weight while in function
(11.2) this is the case for options with prices near zero; cf. Bakshi et al. (1997), p. 2016.
6Numerical experiments conducted with a Python script regarding the two functions RMSE (8.4) and
MSE (11.1) suggest that there are, if at all, only negligible differences in terms of optimization speed or
accuracy.
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calibration. If one has decided upon the option provider itself—say, for example, the Eurex
for the EURO STOXX 50 index—the decision is about the option maturities and strikes to be
included. In addition, there are different quotes per option, like bid, ask, last and settlement
price. For discussions in this regard refer to Bakshi et al. (1997) or Detlefsen (2005). There is
also no guarantee that market prices are arbitrage-free such that the need to adjust raw market
data may arise (cf. Fries (2008), Kahale (2004)).

Section 11.4 implements an approach similar to the one of Galluccio and Le Cam (2008)
who propose to use (at least) three different options per maturity. They choose the at-the-
money (ATM) option, one in-the-money (ITM) option and one out-of-the-money (OTM)
option because “[t]his is the minimal number of instruments to calibrate ATM volatility level,
smile slope and convexity for a given maturity” (p. 20). For the ITM and OTM option strike
levels they propose KITM = KATM + 𝜎

ATM
√

T and KOTM = KATM − 𝜎
ATM

√
T , respectively.

Somewhat deviating from the suggestions in Galluccio and Le Cam (2008), we use a set
of 15 market quotes for European call options as follows:

� maturities: three maturities (all shorter than 1 year)
� strikes: five strikes per maturity

In summary, since the subsequent analysis focuses on equity derivatives on the EURO
STOXX 50 index, the following market data is used for calibration of the BCC97 model (all
data from 30. September 2014):

� short rate component (section 11.3): Eonia rate and Euribor rates (up to 1 year)7

� equity component (section 11.4): European call options on the EURO STOXX 50 offered
by the Eurex in Frankfurt

11.2.5 What Opt imizat ion Algorithm?

The calibration in Chapter 8 uses a two-step procedure: global minimization (i.e. brute force)
followed by local minimization. In what follows, this approach is augmented by another, higher
ranking four-step procedure. First, the stochastic short rate model is calibrated. Second, the
H93 stocahstic volatility model is calibrated via global and local optimization. Third, taking as
input the results from the stochastic volatility calibration, the jump component of the general
market model BCC97 is calibrated—first via global and then via local optimization. Lastly,
the stochastic volatility component of BCC97 is calibrated—via local optimization, taking
as input the results of all other calibrations. During the last step, the jump parameters are,
however, freed again to attain a better overall fit.8

7Cf. Hull and White (2013) for an in-depth discussion of the appropriate risk-free discounting rate for
derivative instruments. As in Filipović (2009), p. 8, Euribor rates are considered risk-free rates in this
book.
8Note that this procedure is only possible since the general market model assumes zero correlation
between the short rate and the equity component. In principle, the general market model could be
calibrated in a single step, at the cost of having a high dimensional parameter space leading to a pretty
high computational burden for the single step.
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Regarding global and local optimization algorithms there are a number of candidates
available. Detlefsen (2005) and Mikhailov and Nögel (2003) discuss this topic in the context
of option model calibration. Liberti (2008) offers a more general and more comprehensive
discussion of alternative optimization algorithms.

11.3 CALIBRATION OF SHORT RATE COMPONENT

This section provides the required tool set to calibrate the CIR85 short rate model to market
rates.

11.3.1 Theoret ica l Foundat ions

The short rate model of CIR85 is widely applied in theory and practice. This section does
not treat it in its full richness but concentrates rather on the calibration procedure for
which only several standard results are needed.9 Recall the CIR85 stochastic differential
equation (9.3)

drt = 𝜅r(𝜃r − rt)dt + 𝜎r
√

rtdZt

The task of calibration is to minimize, for all considered times t and a parameter set
𝛼 = (𝜅r, 𝜃r, 𝜎r, r0), simultaneously the differences

Δf (0, t) ≡ f (0, t) − f CIR85(0, t; 𝛼)

where f (0, t) is the current market implied forward rate for time t and f CIR85(0, t; 𝛼) is the
current model implied forward rate for time t given parameter set 𝛼. If Bt(T), t < T , denotes
the time t price of a zero-coupon bond maturing at time T and paying one unit of currency at
that date, then the (instantaneous) forward rate at time t for time T is defined by

f (t, T) ≡ −
𝜕Bt(T)

𝜕T
(11.5)

with f (0, t) as an obvious special case. Furthermore, the short rate at time t follows from
rt = f (t, t). The other way round (cf. Björk (2004), p. 305) zero-coupon bond prices are
uniquely determined by the forward rate curve

Bt(T) = exp
(

−
∫

T

t
f (t, s)ds

)

9Svoboda (2002) provides a detailed account of the CIR85 model and a number of alternative short rate
models. For a comprehensive overview of interest models in general refer to Brigo and Mercurio (2006).
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With this background knowledge, the usefulness of the following formula for the forward
rates in the CIR85 short rate model becomes clear10

f CIR85(0, t; 𝛼) =
𝜅r𝜃r(e

𝛾t − 1)

2𝛾 + (𝜅r + 𝛾)(e𝛾t − 1)

+ r0
4𝛾2e𝛾t

(2𝛾 + (𝜅r + 𝛾)(e𝛾t − 1))2
(11.6)

where

𝛾 ≡

√

𝜅
2
r + 2𝜎2

r

with the parameters and variables as defined in section 9.2.
The time t price a of zero-coupon bond maturing at time T and paying one unit of currency

is given by the affine formula11

Bt(T) = a(t, T)e−b(t,T)EQ
0 (rt) (11.7)

where

a(t, T) ≡

[
2𝛾 exp(0.5(𝜅r + 𝛾)(T − t))

2𝛾 + (𝜅r + 𝛾)(e𝛾(T−t) − 1)

] 2𝜅r𝜃r
𝜎

2
r (11.8)

and

b(t, T) ≡
2(e𝛾(T−t) − 1)

2𝛾 + (𝜅r + 𝛾)(e𝛾(T−t) − 1)
(11.9)

For the expectation value of rt it holds EQ
0 (rt) = 𝜃r + e−𝜅rt(r0 − 𝜃r).

This completes the tool set for the calibration of the CIR85 model.12

11.3.2 Cal ibrat ion to Euribor Rates

Forward rates are seldom quoted directly in the market. However, what is generally publicly
available is yields, reference or swap rates, like US Treasury yields, German Bund yields,
LIBOR, Euribor, OIS or Eonia spot rates and respective swap rates, for different maturities.

10The formula presented is from London (2005), pp. 542 and 433. Heath, Jarrow and Morton (Heath
et al., 1992), pioneered the approach of taking the forward rate curve as initial input for the modeling of
interest rates.
11In general, it is a desirable feature of short rate models to be affine. This is due to the fact that such
models yield essentially closed-form expressions for zero-coupon bond prices. Cf. Dai and Singleton
(2000).
12Refer to Svoboda (2002) for a detailed derivation of the bond formula (11.7) with (11.8) and (11.9)
from which the forward rate formula (11.6) follows via (11.5).
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There is a one-to-one correspondence between zero-coupon bond yields for different
maturities and forward rates via (cf. Baxter and Rennie (1996), p. 134)

f (0, T) = Y(0, T) + 𝜕Y(0, T)
𝜕T

⋅ T (11.10)

with Y(0, T) as the yield today of a bond maturing at T . The (continuous) yield for a zero-
coupon bond solves the equation

BT (T) = B0(T)eY(0,T)⋅T

⇔ Y(0, T) =
logBT (T) − logB0(T)

T

With the final value of the bond normalized to 1, one has

Y(0, T) = −
log(B0(T))

T

The same relationship holds true for continuous Euribor rates analogously. For coupon bonds,
the formula is not as simple because the single coupon payments up to maturity have to be
accounted for (cf. Filipović (2009), ch. 3).

Unfortunately, spot rates and bond yields are generally only quoted for selected, dis-
crete maturities so that the need arises to interpolate between the single data points. With a
continuously differentiable interpolating function—e.g. from a cubic splines regression (cf.
Brandimarte (2006), pp. 183–188)—one can derive the partial derivative in (11.10) and there-
with forward rates for arbitrary times T .

Euribor rates are quoted on a 30/360 day count basis. For what follows, Euribor rates
therefore have to be transformed into continuous rates (continuous yield of a unit zero-coupon
bond). As an example, take the 6-month Euribor rate which is 0.043%. The corresponding
factor is

f 6m
s = 1 + 180∕360 ⋅ 0.00043

The equivalent annualized continuous rate then is

f 6m
c = 360∕180 ⋅ log (f 6m

s )

This ensures that

1 + 180∕360 ⋅ f 6m
s = e180∕360⋅f 6m

c

holds.
The Python script in sub-section 11.6.1 implements this transformation and the necessary

interpolation for the Euribor term structure from 30. September 2014. The Euribor data set is
complemented by the Eonia rate as the time t = 0 short rate (“maturity of one day”) from 01.
October 2014.

Figure 11.1 shows the spot rates for different maturities, the interpolated rate curve and
its first derivative.
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FIGURE 11.1 Euribor term structure up to 12 months (incl. Eonia rate); points = market
quotes from 30. September 2014, line = interpolated curve, dashed line = 1st derivative of
term structure curve

To calibrate the CIR85 model to the forward rates, the MSE of the market implied and
model implied forward rate curve at selected discrete points in time is minimized. Given a
fixed r0 and an equidistant spacing of [0, T] by Δt with M ≡ T∕Δt, the task is to

min
𝛼

1
M

M∑

m=0

(f (0, mΔt) − f CIR85(0, mΔt; 𝛼))2 (11.11)

A respective algorithm is found in the Python script of sub-section 11.6.1. The results of the
calibration are shown graphically in Figure 11.2.13

Finally, Figure 11.3 shows values for a unit zero-coupon bonds maturing 2 years out
according to the bond valuation formula for the CIR85 model as provided in (11.7) and given
the calibration results.

11.4 CALIBRATION OF EQUITY COMPONENT

This section now deals with the required tools and approaches to calibrate the BCC97 market
model to market observed option quotes.

13Using a deterministic-shift approach, one can make the calibration of the model perfect while preserving
the affine structure. Cf. Brigo and Mercurio (2001).



F IGURE 11.2 Market and model implied forward rates for Euribor; line = market forward rates
from 30. September 2014, dots = model implied forward rates; bars = the difference between the
model and market forward rates

F IGURE 11.3 Unit zero-coupon bond values at time t maturing at time T = 2
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11.4.1 Valuat ion via Fourier Transform Method

The previous section provides a calibrated short rate model so that market consistent short
rates are now available for the valuation of plain vanilla European call options. This is the
major prerequisite for the calibration of the general market model in terms of the equity
component. This section applies the Fourier transform method and makes heavy use of the
following formula for call options

C0(K, T) = S0 − B0(T)
√

S0K
1
𝜋

⋅
∫

∞

0
Re[e−iuk

𝜙0(u − i∕2, T)]
du

u2 + 1∕4
(11.12)

with k ≡ log(S0∕K) and 𝜑0 the characteristic function of the model at hand—in our case


BCC97. B0(T) is the appropriate discount factor, i.e. bond present value, for the option
maturity from the calibrated CIR85 model. The related Python scripts work with a constant
short rate where a value r̄ is used that solves the equation B0(T) = e−r̄T . This is made for
simplicity and is possible because of European exercise. Sub-section 9.7.3 offers Python
implementations for the BCC97 model and the special cases of M76 and H93.

The script in sub-section 9.7.3 provides characteristic function implementations for M76
(on a stand-alone basis), for H93 (on a stand-alone basis) and for BCC97 (combination of H93
and jump component of M76). The characteristic function of the BCC97 model with constant
short rate is simply the product of the characteristic function of the M76 jump component (see
also equations (6.14) and (6.15))

𝜑
M76J
0 (u, T) = exp((iu𝜔 + 𝜆(eiu𝜇J−u2

𝛿
2∕2 − 1))T) (11.13)

where the risk-neutral drift (correction) term 𝜔 takes now on the form

𝜔 ≡ −𝜆(e𝜇J+𝛿2∕2 − 1) (11.14)

and the characteristic function of the H93 model14

𝜑
H93
0 (u, T) = eH1(u,T)+H2(u,T)v0 (11.15)

with the following definitions

c1 ≡ 𝜅v𝜃v

c2 ≡ −
√

(𝜌𝜎vui − 𝜅v)2 − 𝜎
2
v (−ui − u2)

c3 ≡

𝜅v − 𝜌𝜎vui + c2

𝜅v − 𝜌𝜎vui − c2

H1(u, T) ≡ r0,TuiT +
c1

𝜎
2
v

{

(𝜅v − 𝜌𝜎vui + c2)T − 2 log
[

1 − c1ec3T

1 − c3

]}

H2(u, T) ≡
𝜅v − 𝜌𝜎vui + c2

𝜎
2
v

[
1 − ec2T

1 − c3ec2T

]

14See Cherubini et al. (2009), app. G, Gatheral (2006), ch. 2, or Heston (1993).
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and all variables as defined as before. In H1 we set r0,T = − log(B0(T))∕T where we get B0(T)
from equations (9.4)–(9.7) for the CIR85 model.

Therefore, the characteristic function for BCC97 with constant short rate is the product
of (11.15) and (11.13)

𝜑
BCC97
0 (u, T) = 𝜑

H93
0 ⋅ 𝜑M76J

0 (u, T) (11.16)

This completes the necessary ingredients for the calibration of the equity component.

11.4.2 Cal ibrat ion to EURO STOXX 50 Opt ion Quotes

To have a small but still meaningful subset of market prices in terms of maturities, the
subsequent analysis considers three maturities:

� 17. October 2014 (17 days)
� 19. December 2014 (80 days)
� 20. March 2015 (171 days)

Maturity day generally is the third Friday of the month if this is a business day.
Per maturity, we consider five different strikes: 3,000, 3,100, 3,200, 3,300, 3,400—given

a spot closing level of 3,225.93 of the EURO STOXX 50 on 30. September 2014.
The calibration is done for the EURO STOXX 50 index and on the basis of European call

options from the Eurex.15 The calibration takes a total of 15 European call option quotes into
account.

Before proceeding, the right short rates have to be derived from the calibrated CIR85
model since the Fourier transform pricing formula is for constant short rates only. One can
recover the right short rate for option maturity T in knowledge of the bond price B0(T) via

r̄∗(T) = −
logB0(T)

T

which is equivalent to the continuous yield of the respective zero-coupon bond. This approach
is used in the calibration scripts to derive equivalent constant short rates for each maturity,
respectively.

11.4.3 Cal ibrat ion of H93 Model

Before going on to the general market model BCC97, we look first at a model calibration of
the H93 stochastic volatility model without jump component. Sub-section 11.6.2 contains the
Python script for the model calibration.

Figure 11.4 shows the results of the calibration which are already quite good. The MSE
of this calibration is 0.307 and the optimal parameters are as follows:

� 𝜅v = 18.447
� 𝜃v = 0.026

15Reinsberg (2006), for example, is an empirical study of option pricing models similar to Bakshi et al.
(1997) and also with the EURO STOXX 50 as the benchmark index.
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FIGURE 11.4 Results of H93 model calibration to EURO STOXX 50 option quotes; line =
market quotes from 30. September 2014, red dots = model values after calibration

� 𝜎v = 0.978
� 𝜌 = −0.821
� v0 = 0.035

Figure 11.5 shows the resulting model implied volatilities compared to the market implied
volatilities—including absolute differences. The figures are generated with the Python script
in sub-section 11.6.3. The implied volatility fit is also quite good.

11.4.4 Cal ibrat ion of Jump Component

It is well-known that the problem of calibrating a jump-diffusion model—and in particular the
M76 one—suffers from two major problems (cf. the in-depth discussion in Galluccio and Le
Cam (2008)):

� degeneracy: different parameter combinations may yield the same values for the error
function

� indeterminacy: the error function is not strictly convex and may exhibit many local
minima

This so-called ill-posedness is of importance when calibrating models for the first time but in
particular when re-calibrating them. Practitioners look for stable parameters in calibrations16

16This is mainly due to the fact that in general hedging programs depend on the parameters of the model
used. Strongly varying parameters could therefore lead to highly oscillating hedge positions.
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F IGURE 11.5 Implied volatilities from H93 model calibration
to EURO STOXX 50 option quotes from 30. September 2014
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and with degeneracy and indeterminacy parameters might “jump” significantly when re-
calibrating models. A solution to this is the regularization of the error function—where MSE
is used in the following—via, for example, Tikhonov regularization. To this end, the error
function used for the local optimization is enhanced by a penalty term of the form (cf.
Cherubini et al. (2009))

Penalty(p) ≡
√

(p0 − p)2 (11.17)

where p0 is the initial input parameter vector for the local optimization (here coming from
the global optimization) and p the current parameter vector. Term (11.17) penalizes deviations
from the initial inputs—and thereby avoids unjustifiable deviations from the preliminary global
optimum and undesired jumps of parameter values.

The problem of calibrating the BCC97 model therefore is (cf. equation (11.1)) in its
general form, including the penalty term

min
p

1
N

N∑

n=1

(
C∗

n − CBCC97
n (p)

)2 + w ⋅ Penalty(p)

with the C∗
n being the market or input prices and the CBCC97

n being the model or output prices
given parameter vector p. w is a weighting parameter which can be used to give the penalty
more influence if necessary.

Sub-section 11.6.4 contains the Python script that implements the second part of the equity
component calibration. Here the jump part of the equity component is calibrated to the five
options with the shortest maturity, first via global then via local optimization using Tikhonov
regularization. The script uses the results of the H93 calibration for the stochastic volatility
parametrization. The calibration yields the following optimal results:

� 𝜆 = 0.008
� 𝜇 = −0.600
� 𝛿 = 0.001

Figure 11.6 shows the calibration results graphically. The fit for the shortest maturity has
an MSE of 0.558.

11.4.5 Complete Cal ibrat ion of BCC97 Model

In the third part of the equity component calibration, the results from the H93 model calibration
and from the jump component calibration are taken as input parameters (𝜅v, 𝜃v, 𝜎v, 𝜌, v0, 𝜆,𝜇, 𝛿)
for the local optimization procedure. The Python script in sub-section 11.6.5 calibrates the
BCC97 model to all options and simultaneously derives—via local optimization—optimal
values for all parameters of BCC97 (with constant but maturity-dependent short rate). The
MSE decreases to a rather low 0.104 and the optimal parameters are:

� 𝜅v = 22.212
� 𝜃v = 0.025
� 𝜎v = 0.952
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F IGURE 11.6 Results of BCC97 jump-diffusion part calibration to five European call options on the
EURO STOXX 50 with 17 days maturity; market quotes from 30. September 2014

� 𝜌 = −0.999
� v0 = 0.036
� 𝜆 = 0.008
� 𝜇 = −0.501
� 𝛿 = 0.000

Figure 11.7 compares the market quotes with the option values generated by the calibrated
BCC97 model.

Finally, Figure 11.8 compares the market implied volatilities with the model implied
volatilities after calibration of the BCC97 model.

11.4.6 Cal ibrat ion to Impl ied Volat i l i t ies

Depending on the specific purpose of the calibration a good implied volatility fit may
be more important than a good price fit. This final sub-section, therefore, calibrates the
BCC97 model to market implied volatilities directly. To this end, one needs to calcu-
late market implied volatilities first and model implied volatilities per iteration of local
optimization runs.
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FIGURE 11.7 Results of simultaneous BCC97 jump-diffusion and stochastic
volatility part calibration to 15 European call options on the EURO STOXX 50 with 17,
80 and 171 days maturity, respectively; quotes from 30. September 2014

The Python script in sub-section 11.6.6 implements a local calibration procedure in this
regard, taking the optimal parameters from the previous BCC97 model calibration (to market
quotes) as starting values. The major difference is the specification of the error function
according to (11.4). The vega-weighted MSE in this case is pretty low with 0.083 for the
following optimal parameters:

� 𝜅v = 28.473
� 𝜃v = 0.025
� 𝜎v = 1.175
� 𝜌 = −0.953
� v0 = 0.039
� 𝜆 = 0.007
� 𝜇 = −0.600
� 𝛿 = 0.000

Figure 11.9 shows the resulting model values compared to the market quotes of the EURO
STOXX 50 call options. Although not the direct target of the optimization, the value fits are
again quite good.

Figure 11.10 shows the resulting model implied volatilities compared to the market implied
volatilities. Here, it is important to recall that the error function (11.4) gives less weight to
errors for (far) OTM/ITM options and more weight to errors for options with longer maturities
ceteris paribus.
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F IGURE 11.8 Implied volatilities from BCC97 model
calibration to EURO STOXX 50 option quotes from 30.
September 2014
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FIGURE 11.9 Results of BCC97 calibration to 15 market implied volatilities
of EURO STOXX 50 European call options with 17, 80 and 171 days maturity,
respectively; market quotes from 30. September 2014

11.5 CONCLUSIONS

“The market is always right.” This is the credo of this chapter. In this sense, the chapter
takes market interest rates and market quotes for plain vanilla instruments as given and tries
to find—by global and local optimization—those parameters for the BCC97 model that best
replicate the observed option quotes.

A central question in this context is to what market data one should try to calibrate
the model. This question cannot be answered with any generality. The answer depends, in
a complex fashion, on the task at hand and on the particular products one wishes to trade,
price/value or hedge.

However, the chapter illustrates that the model of BCC97 is rich enough to replicate
observed yields and option quotes as well as implied volatilities of quoted options reasonably
well. Equipped with a market-calibrated model, the next two chapters can now proceed with
the market-based valuation and hedging of equity derivatives, respectively.

11.6 PYTHON SCRIPTS FOR COX- INGERSOLL-ROSS MODEL

11.6.1 Cal ibrat ion of CIR85

#

# Calibration of CIR85 model

# to Euribor Rates from 30. September 2014

# 11_cal/CIR_calibration.py

#



244 DERIVATIVES ANALYTICS WITH PYTHON

F IGURE 11.10 Implied volatilities from BCC97 model
calibration to EURO STOXX 50 implied volatilities from 30.
September 2014



Model Calibration 245

# (c) Dr. Yves J. Hilpisch

# Derivatives Analytics with Python

#

import sys

sys.path.append('10_mcs')

import math

import numpy as np

np.set_printoptions(suppress=True,

formatter={'all': lambda x: '%7.6f' % x})
import matplotlib.pyplot as plt

import matplotlib as mpl

mpl.rcParams['font.family'] = 'serif'

import scipy.interpolate as sci

from scipy.optimize import fmin

from CIR_zcb_valuation_gen import B

#

# Market Data: Eonia rate (01.10.2014) + Euribor rates

# Source: http://www.emmi-benchmarks.eu

# on 30. September 2014

#

t_list = np.array((1, 7, 14, 30, 60, 90, 180, 270, 360)) / 360.

r_list = np.array((-0.032, -0.013, -0.013, 0.007, 0.043,

0.083, 0.183, 0.251, 0.338)) / 100

factors = (1 + t_list * r_list)

zero_rates = 1 / t_list * np.log(factors)

r0 = r_list[0]

#

# Interpolation of Market Data

#

tck = sci.splrep(t_list, zero_rates, k=3) # cubic splines

tn_list = np.linspace(0.0, 1.0, 24)

ts_list = sci.splev(tn_list, tck, der=0)

de_list = sci.splev(tn_list, tck, der=1)

f = ts_list + de_list * tn_list

# forward rate transformation

def plot_term_structure():

plt.figure(figsize=(8, 5))

plt.plot(t_list, r_list, 'ro', label='rates')

plt.plot(tn_list, ts_list, 'b', label='interpolation', lw=1.5)

# cubic splines

http://www.emmi-benchmarks.eu
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plt.plot(tn_list, de_list, 'g--', label='1st derivative', lw=1.5)

# first derivative

plt.legend(loc=0)

plt.xlabel('time horizon in years')

plt.ylabel('rate')

plt.grid()

#

# Model Forward Rates

#

def CIR_forward_rate(opt):

''' Function for forward rates in CIR85 model.

Parameters

==========

kappa_r: float

mean-reversion factor

theta_r: float

long-run mean

sigma_r: float

volatility factor

Returns

=======

forward_rate: float

forward rate

'''

kappa_r, theta_r, sigma_r = opt

t = tn_list

g = np.sqrt(kappa_r ** 2 + 2 * sigma_r ** 2)

sum1 = ((kappa_r * theta_r * (np.exp(g * t) - 1)) /

(2 * g + (kappa_r + g) * (np.exp(g * t) - 1)))

sum2 = r0 * ((4 * g ** 2 * np.exp(g * t)) /

(2 * g + (kappa_r + g) * (np.exp(g * t) - 1)) ** 2)

forward_rate = sum1 + sum2

return forward_rate

#

# Error Function

#

def CIR_error_function(opt):

''' Error function for CIR85 model calibration. '''

kappa_r, theta_r, sigma_r = opt

if 2 * kappa_r * theta_r < sigma_r ** 2:

return 100

if kappa_r < 0 or theta_r < 0 or sigma_r < 0.001:
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return 100

forward_rates = CIR_forward_rate(opt)

MSE = np.sum((f - forward_rates) ** 2) / len(f)

# print opt, MSE

return MSE

#

# Calibration Procedure

#

def CIR_calibration():

opt = fmin(CIR_error_function, [1.0, 0.02, 0.1],

xtol=0.00001, ftol=0.00001,

maxiter=300, maxfun=500)

return opt

#

# Graphical Results Output

#

def plot_calibrated_frc(opt):

''' Plots market and calibrated forward rate curves. '''

forward_rates = CIR_forward_rate(opt)

plt.figure(figsize=(8, 7))

plt.subplot(211)

plt.grid()

plt.ylabel('forward rate $f(0,T)$')

plt.plot(tn_list, f, 'b', label='market')

plt.plot(tn_list, forward_rates, 'ro', label='model')

plt.legend(loc=0)

plt.axis([min(tn_list) - 0.05, max(tn_list) + 0.05,

min(f) - 0.005, max(f) * 1.1])

plt.subplot(212)

plt.grid(True)

wi = 0.02

plt.bar(tn_list - wi / 2, forward_rates - f, width=wi)

plt.xlabel('time horizon in years')

plt.ylabel('difference')

plt.axis([min(tn_list) - 0.05, max(tn_list) + 0.05,

min(forward_rates - f) * 1.1, max(forward_rates - f) * 1.1])

plt.tight_layout()

def plot_zcb_values(p0, T):

''' Plots unit zero-coupon bond values (discount factors). '''

t_list = np.linspace(0.0, T, 20)

r_list = B([r0, p0[0], p0[1], p0[2], t_list, T])

plt.figure(figsize=(8, 5))

plt.plot(t_list, r_list, 'b')
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plt.plot(t_list, r_list, 'ro')

plt.xlabel('time horizon in years')

plt.ylabel('unit zero-coupon bond value')

plt.grid()

11.6.2 Cal ibrat ion of H93 Stochast ic Volat i l i ty Model

#

# Calibration of Bakshi, Cao and Chen (1997)

# Stoch Vol Jump Model to EURO STOXX Option Quotes

# Data Source: www.eurexchange.com

# via Numerical Integration

# 11_cal/BCC97_calibration_2.py

#

# (c) Dr. Yves J. Hilpisch

# Derivatives Analytics with Python

#

import sys

sys.path.append('09_gmm')

import math

import numpy as np

np.set_printoptions(suppress=True,

formatter={'all': lambda x: '%5.3f' % x})
import pandas as pd

from scipy.optimize import brute, fmin, minimize

import matplotlib as mpl

mpl.rcParams['font.family'] = 'serif'

from BCC_option_valuation import H93_call_value

from CIR_calibration import CIR_calibration, r_list

from CIR_zcb_valuation import B

#

# Calibrate Short Rate Model

#

kappa_r, theta_r, sigma_r = CIR_calibration()

#

# Market Data from www.eurexchange.com

# as of 30. September 2014

#

h5 = pd.HDFStore('08_m76/option_data.h5', 'r')

data = h5['data'] # European call & put option data (3 maturities)

h5.close()

S0 = 3225.93 # EURO STOXX 50 level 30.09.2014

r0 = r_list[0] # initial short rate

http://www.eurexchange.com
http://www.eurexchange.com
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#

# Option Selection

#

tol = 0.02 # percent ITM/OTM options

options = data[(np.abs(data['Strike'] - S0) / S0) < tol]

# options = data[data['Strike'].isin([3100, 3150, 3225, 3300, 3350])]

#

# Adding Time-to-Maturity and Short Rates

#

for row, option in options.iterrows():

T = (option['Maturity'] - option['Date']).days / 365.

options.ix[row, 'T'] = T

B0T = B([kappa_r, theta_r, sigma_r, r0, T])

options.ix[row, 'r'] = -math.log(B0T) / T

#

# Calibration Functions

#

i = 0

min_MSE = 500

def H93_error_function(p0):

''' Error function for parameter calibration in BCC97 model via

Lewis (2001) Fourier approach.

Parameters

==========

kappa_v: float

mean-reversion factor

theta_v: float

long-run mean of variance

sigma_v: float

volatility of variance

rho: float

correlation between variance and stock/index level

v0: float

initial, instantaneous variance

Returns

=======

MSE: float

mean squared error

'''

global i, min_MSE

kappa_v, theta_v, sigma_v, rho, v0 = p0
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if kappa_v < 0.0 or theta_v < 0.005 or sigma_v < 0.0 or \
rho < -1.0 or rho > 1.0:

return 500.0

if 2 * kappa_v * theta_v < sigma_v ** 2:

return 500.0

se = []

for row, option in options.iterrows():

model_value = H93_call_value(S0, option['Strike'], option['T'],

option['r'], kappa_v, theta_v, sigma_v, rho, v0)

se.append((model_value - option['Call']) ** 2)

MSE = sum(se) / len(se)

min_MSE = min(min_MSE, MSE)

if i % 25 == 0:

print '%4d |' % i, np.array(p0), '| %7.3f | %7.3f' % (MSE, min_MSE)

i += 1

return MSE

def H93_calibration_full():

''' Calibrates H93 stochastic volatility model to market quotes. '''

# first run with brute force

# (scan sensible regions)

p0 = brute(H93_error_function,

((2.5, 10.6, 5.0), # kappa_v

(0.01, 0.041, 0.01), # theta_v

(0.05, 0.251, 0.1), # sigma_v

(-0.75, 0.01, 0.25), # rho

(0.01, 0.031, 0.01)), # v0

finish=None)

# second run with local, convex minimization

# (dig deeper where promising)

opt = fmin(H93_error_function, p0,

xtol=0.000001, ftol=0.000001,

maxiter=750, maxfun=900)

np.save('11_cal/opt_sv', np.array(opt))

return opt

def H93_calculate_model_values(p0):

''' Calculates all model values given parameter vector p0. '''

kappa_v, theta_v, sigma_v, rho, v0 = p0

values = []

for row, option in options.iterrows():

model_value = H93_call_value(S0, option['Strike'], option['T'],

option['r'], kappa_v, theta_v, sigma_v, rho, v0)

values.append(model_value)

return np.array(values)
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11.6.3 Comparison of Impl ied Volat i l i t ies

#

# Black-Scholes-Merton Implied Volatilities of

# of Calibrated BCC97 Model

# Data Source: www.eurexchange.com, 30. September 2014

# 11_cal/plot_implied_volatilities.py

#

# (c) Dr. Yves J. Hilpisch

# Derivatives Analytics with Python

#

import sys

sys.path.extend(['03_stf', '09_gmm'])

import math

import pandas as pd

import matplotlib.pyplot as plt

import matplotlib as mpl

mpl.rcParams['font.family'] = 'serif'

from BSM_imp_vol import call_option

from CIR_zcb_valuation import B

from H93_calibration import S0, r0, kappa_r, theta_r, sigma_r

#

# Calibration Results

#

def calculate_implied_volatilities(filename):

''' Calculates market and model implied volatilities. '''

h5 = pd.HDFStore(filename, 'r')

options = h5['options']

h5.close()

for row, option in options.iterrows():

T = (option['Maturity'] - option['Date']).days / 365.

B0T = B([kappa_r, theta_r, sigma_r, r0, T])

r = -math.log(B0T) / T

call = call_option(S0, option['Strike'], option['Date'],

option['Maturity'], option['r'], 0.1)

options.ix[row, 'market_iv'] = call.imp_vol(option['Call'], 0.15)

options.ix[row, 'model_iv'] = call.imp_vol(option['Model'], 0.15)

return options

def plot_implied_volatilities(options, model):

''' Plots market implied volatilities against model implied ones. '''

mats = sorted(set(options.Maturity))

for mat in mats:

opts = options[options.Maturity == mat]

http://www.eurexchange.com
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plt.figure(figsize=(8, 6))

plt.subplot(211)

plt.grid()

plt.ylabel('implied volatility')

plt.plot(opts.Strike, opts.market_iv, 'b', label='market', lw=1.5)

plt.plot(opts.Strike, opts.model_iv, 'ro', label='model')

plt.legend(loc=0)

plt.axis([min(opts.Strike) - 10, max(opts.Strike) + 10,

min(opts.market_iv) - 0.015, max(opts.market_iv) + 0.015])

plt.title('Maturity %s' % str(mat)[:10])

plt.subplot(212)

plt.grid(True)

wi = 5.0

diffs = opts.model_iv.values - opts.market_iv.values

plt.bar(opts.Strike - wi / 2, diffs, width=wi)

plt.ylabel('difference')

ymi = min(diffs) - (max(diffs) - min(diffs)) * 0.1

yma = max(diffs) + (max(diffs) - min(diffs)) * 0.1

plt.axis([min(opts.Strike) - 10, max(opts.Strike) + 10, ymi, yma])

plt.tight_layout()

plt.savefig('../images/11_cal/%s_calibration_iv_%s.pdf'

% (model, str(mat)[:10]))

11.6.4 Cal ibrat ion of Jump-Di f fus ion Part of BCC97

#

# Calibration of Bakshi, Cao and Chen (1997)

# Stoch Vol Jump Model to EURO STOXX Option Quotes

# Data Source: www.eurexchange.com

# via Numerical Integration

# 11_cal/BCC97_calibration_short.py

#

# (c) Dr. Yves J. Hilpisch

# Derivatives Analytics with Python

#

import sys

sys.path.append('09_gmm')

import math

import numpy as np

np.set_printoptions(suppress=True,

formatter={'all': lambda x: '%5.3f' % x})
import pandas as pd

from scipy.optimize import brute, fmin

import matplotlib.pyplot as plt

http://www.eurexchange.com
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import matplotlib as mpl

mpl.rcParams['font.family'] = 'serif'

from BCC_option_valuation import BCC_call_value

from CIR_calibration import CIR_calibration, r_list

from CIR_zcb_valuation import B

from H93_calibration import options

#

# Calibrate Short Rate Model

#

kappa_r, theta_r, sigma_r = CIR_calibration()

#

# Market Data from www.eurexchange.com

# as of 30. September 2014

#

S0 = 3225.93 # EURO STOXX 50 level

r0 = r_list[0] # initial short rate

#

# Option Selection

#

mats = sorted(set(options['Maturity']))

options = options[options['Maturity'] == mats[0]]

# only shortest maturity

#

# Initial Parameter Guesses

#

kappa_v, theta_v, sigma_v, rho, v0 = np.load('11_cal/opt_sv.npy')

# from H93 model calibration

#

# Calibration Functions

#

i = 0

min_MSE = 5000.0

local_opt = False

def BCC_error_function(p0):

''' Error function for parameter calibration in M76 Model via

Carr-Madan (1999) FFT approach.

Parameters

==========

lamb: float

jump intensity

http://www.eurexchange.com
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mu: float

expected jump size

delta: float

standard deviation of jump

Returns

=======

MSE: float

mean squared error

'''

global i, min_MSE, local_opt, opt1

lamb, mu, delta = p0

if lamb < 0.0 or mu < -0.6 or mu > 0.0 or delta < 0.0:

return 5000.0

se = []

for row, option in options.iterrows():

model_value = BCC_call_value(S0, option['Strike'], option['T'],

option['r'], kappa_v, theta_v, sigma_v, rho, v0,

lamb, mu, delta)

se.append((model_value - option['Call']) ** 2)

MSE = sum(se) / len(se)

min_MSE = min(min_MSE, MSE)

if i % 25 == 0:

print '%4d |' % i, np.array(p0), '| %7.3f | %7.3f' % (MSE, min_MSE)

i += 1

if local_opt:

penalty = np.sqrt(np.sum((p0 - opt1) ** 2)) * 1

return MSE + penalty

return MSE

#

# Calibration

#

def BCC_calibration_short():

''' Calibrates jump component of BCC97 model to market quotes. '''

# first run with brute force

# (scan sensible regions)

opt1 = 0.0

opt1 = brute(BCC_error_function,

((0.0, 0.51, 0.1), # lambda

(-0.5, -0.11, 0.1), # mu

(0.0, 0.51, 0.25)), # delta

finish=None)

# second run with local, convex minimization

# (dig deeper where promising)
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local_opt = True

opt2 = fmin(BCC_error_function, opt1,

xtol=0.0000001, ftol=0.0000001,

maxiter=550, maxfun=750)

np.save('11_cal/opt_jump', np.array(opt2))

return opt2

def BCC_jump_calculate_model_values(p0):

''' Calculates all model values given parameter vector p0. '''

lamb, mu, delta = p0

values = []

for row, option in options.iterrows():

T = (option['Maturity'] - option['Date']).days / 365.

B0T = B([kappa_r, theta_r, sigma_r, r0, T])

r = -math.log(B0T) / T

model_value = BCC_call_value(S0, option['Strike'], T, r,

kappa_v, theta_v, sigma_v, rho, v0,

lamb, mu, delta)

values.append(model_value)

return np.array(values)

#

# Graphical Results Output

#

def plot_calibration_results(p0):

options['Model'] = BCC_jump_calculate_model_values(p0)

plt.figure(figsize=(8, 6))

plt.subplot(211)

plt.grid()

plt.title('Maturity %s' % str(options['Maturity'].iloc[0])[:10])

plt.ylabel('option values')

plt.plot(options.Strike, options.Call, 'b', label='market')

plt.plot(options.Strike, options.Model, 'ro', label='model')

plt.legend(loc=0)

plt.axis([min(options.Strike) - 10, max(options.Strike) + 10,

min(options.Call) - 10, max(options.Call) + 10])

plt.subplot(212)

plt.grid(True)

wi = 5.0

diffs = options.Model.values - options.Call.values

plt.bar(options.Strike - wi / 2, diffs, width=wi)

plt.ylabel('difference')

plt.axis([min(options.Strike) - 10, max(options.Strike) + 10,

min(diffs) * 1.1, max(diffs) * 1.1])

plt.tight_layout()
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11.6.5 Cal ibrat ion of Complete Model of BCC97

#

# Calibration of Bakshi, Cao and Chen (1997)

# Stoch Vol Jump Model to EURO STOXX Option Quotes

# Data Source: www.eurexchange.com

# via Numerical Integration

# 11_cal/BCC97_calibration_full.py

#

# (c) Dr. Yves J. Hilpisch

# Derivatives Analytics with Python

#

import sys

sys.path.append('09_gmm')

import math

import numpy as np

np.set_printoptions(suppress=True,

formatter={'all': lambda x: '%5.3f' % x})
import pandas as pd

from scipy.optimize import brute, fmin, minimize

import matplotlib as mpl

mpl.rcParams['font.family'] = 'serif'

from BCC_option_valuation import BCC_call_value

from CIR_calibration import CIR_calibration, r_list

from CIR_zcb_valuation import B

from H93_calibration import options

#

# Calibrate Short Rate Model

#

kappa_r, theta_r, sigma_r = CIR_calibration()

#

# Market Data from www.eurexchange.com

# as of 30. September 2014

#

S0 = 3225.93 # EURO STOXX 50 level

r0 = r_list[0] # initial short rate

#

# Parameters from H93 & jump calibrations

#

kappa_v, theta_v, sigma_v, rho, v0 = np.load('11_cal/opt_sv.npy')

lamb, mu, delta = np.load('11_cal/opt_jump.npy')

p0 = [kappa_v, theta_v, sigma_v, rho, v0, lamb, mu, delta]

#

# Calibration Functions

http://www.eurexchange.com
http://www.eurexchange.com
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#

i = 0

min_MSE = 5000.0

def BCC_error_function(p0):

''' Error function for parameter calibration in BCC97 model via

Lewis (2001) Fourier approach.

Parameters

==========

kappa_v: float

mean-reversion factor

theta_v: float

long-run mean of variance

sigma_v: float

volatility of variance

rho: float

correlation between variance and stock/index level

v0: float

initial, instantaneous variance

lamb: float

jump intensity

mu: float

expected jump size

delta: float

standard deviation of jump

Returns

=======

MSE: float

mean squared error

'''

global i, min_MSE

kappa_v, theta_v, sigma_v, rho, v0, lamb, mu, delta = p0

if kappa_v < 0.0 or theta_v < 0.005 or sigma_v < 0.0 or \
rho < -1.0 or rho > 1.0 or v0 < 0.0 or lamb < 0.0 or \
mu < -.6 or mu > 0.0 or delta < 0.0:

return 5000.0

if 2 * kappa_v * theta_v < sigma_v ** 2:

return 5000.0

se = []

for row, option in options.iterrows():

model_value = BCC_call_value(S0, option['Strike'], option['T'],

option['r'], kappa_v, theta_v, sigma_v, rho, v0,

lamb, mu, delta)

se.append((model_value - option['Call']) ** 2)

MSE = sum(se) / len(se)

min_MSE = min(min_MSE, MSE)
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if i % 25 == 0:

print '%4d |' % i, np.array(p0), '| %7.3f | %7.3f' % (MSE, min_MSE)

i += 1

return MSE

def BCC_calibration_full():

''' Calibrates complete BCC97 model to market quotes. '''

# local, convex minimization for all parameters

opt = fmin(BCC_error_function, p0,

xtol=0.000001, ftol=0.000001,

maxiter=450, maxfun=650)

np.save('11_cal/opt_full', np.array(opt))

return opt

def BCC_calculate_model_values(p0):

''' Calculates all model values given parameter vector p0. '''

kappa_v, theta_v, sigma_v, rho, v0, lamb, mu, delta = p0

values = []

for row, option in options.iterrows():

model_value = BCC_call_value(S0, option['Strike'], option['T'],

option['r'], kappa_v, theta_v, sigma_v, rho, v0,

lamb, mu, delta)

values.append(model_value)

return np.array(values)

11.6.6 Cal ibrat ion of BCC97 Model to Impl ied Volat i l i t ies

#

# Calibration of Bakshi, Cao and Chen (1997)

# Stoch Vol Jump Model to EURO STOXX Option Quotes

# Data Source: www.eurexchange.com

# via Numerical Integration

# 11_cal/BCC97_calibration_iv.py

#

# (c) Dr. Yves J. Hilpisch

# Derivatives Analytics with Python

#

import sys

sys.path.append('09_gmm')

import math

import numpy as np

np.set_printoptions(suppress=True,

formatter={'all': lambda x: '%5.3f' % x})
import pandas as pd

from scipy.optimize import brute, fmin, minimize

http://www.eurexchange.com
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import matplotlib as mpl

mpl.rcParams['font.family'] = 'serif'

from BSM_imp_vol import call_option

from BCC_option_valuation import BCC_call_value

from CIR_calibration import CIR_calibration, r_list

from CIR_zcb_valuation import B

from H93_calibration import options

#

# Calibrate Short Rate Model

#

kappa_r, theta_r, sigma_r = CIR_calibration()

#

# Market Data from www.eurexchange.com

# as of 30. September 2014

#

S0 = 3225.93 # EURO STOXX 50 level 30.09.2014

r0 = r_list[0] # initial short rate

#

# Market Implied Volatilities

#

for row, option in options.iterrows():

call = call_option(S0, option['Strike'], option['Date'],

option['Maturity'], option['r'], 0.15)

options.ix[row, 'Market_IV'] = call.imp_vol(option['Call'], 0.15)

#

# Calibration Functions

#

i = 0

min_MSE = 5000.0

def BCC_iv_error_function(p0):

''' Error function for parameter calibration in BCC97 model via

Lewis (2001) Fourier approach.

Parameters

==========

kappa_v: float

mean-reversion factor

theta_v: float

long-run mean of variance

sigma_v: float

volatility of variance

rho: float

correlation between variance and stock/index level

http://www.eurexchange.com
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v0: float

initial, instantaneous variance

lamb: float

jump intensity

mu: float

expected jump size

delta: float

standard deviation of jump

Returns

=======

MSE: float

mean squared error

'''

global i, min_MSE

kappa_v, theta_v, sigma_v, rho, v0, lamb, mu, delta = p0

if kappa_v < 0.0 or theta_v < 0.005 or sigma_v < 0.0 or \
rho < -1.0 or rho > 1.0 or v0 < 0.0 or lamb < 0.0 or \
mu < -.6 or mu > 0.0 or delta < 0.0:

return 5000.0

if 2 * kappa_v * theta_v < sigma_v ** 2:

return 5000.0

se = []

for row, option in options.iterrows():

call = call_option(S0, option['Strike'], option['Date'],

option['Maturity'], option['r'],

option['Market_IV'])

model_value = BCC_call_value(S0, option['Strike'], option['T'],

option['r'], kappa_v, theta_v, sigma_v, rho, v0,

lamb, mu, delta)

model_iv = call.imp_vol(model_value, 0.15)

se.append(((model_iv - option['Market_IV']) * call.vega()) ** 2)

MSE = sum(se) / len(se)

min_MSE = min(min_MSE, MSE)

if i % 25 == 0:

print '%4d |' % i, np.array(p0), '| %7.3f | %7.3f' % (MSE, min_MSE)

i += 1

return MSE

def BCC_iv_calibration_full():

''' Calibrates complete BCC97 model to market implied volatilities. '''

p0 = np.load('11_cal/opt_full.npy')

# local, convex minimization

opt = fmin(BCC_iv_error_function, p0,

xtol=0.000001, ftol=0.000001,
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maxiter=450, maxfun=650)

np.save('11_cal/opt_iv', opt)

return opt

def BCC_calculate_model_values(p0):

''' Calculates all model values given parameter vector p0. '''

kappa_v, theta_v, sigma_v, rho, v0, lamb, mu, delta = p0

values = []

for row, option in options.iterrows():

model_value = BCC_call_value(S0, option['Strike'], option['T'],

option['r'], kappa_v, theta_v, sigma_v, rho, v0,

lamb, mu, delta)

values.append(model_value)

return np.array(values)





CHAPTER 12
Simulation and Valuation in the General

Model Framework

12.1 INTRODUCTION

Monte Carlo simulation (MCS) is an efficient and flexible method to evaluate financial models
and derivative pricing formulas numerically. The first step when valuing derivative instruments
via MCS is to discretize the stochastic differential equations (SDE) that govern the dynamics
of a given model. The correct and efficient discretization of SDEs is all but trivial and there is
a large body of literature that deals with this particular topic. Chapter 10 addresses this topic
in detail and introduces a number of correct and approximate discretization schemes for both
the index process and the square-root diffusions of the general model framework 

BCC97.
The didactical approach of this book is to illustrate the translation of theoretical models

into executable Python scripts. Therefore, the exposition in this chapter only applies one
discretization scheme for the index and the other processes, respectively.

Section 12.2 simulates the calibrated model BCC97 of the previous chapter. Apart from
being calibrated, the model now includes the jump component—a topic not addressed in
Chapter 10. Section 12.3 then proceeds by valuing European and American options in this
set-up by means of MCS.

12.2 SIMULATION OF BCC97 MODEL

Given is the general market modelBCC97 of Chapter 9. To begin with, divide the time interval
[0, T] in equidistant sub-intervals of length Δt such that one has t ∈ {0,Δt, 2Δt,… , T}, i.e.
M + 1 discrete points in time with M ≡ T∕Δt. A discretization of the general market model
(9.1), (9.2) and (9.3) then looks like (with s ≡ t − Δt)

St = Ss

(

e(r̄t−rJ−vt∕2)Δt+
√

vt

√
Δtz1

t +
(

e𝜇J+𝛿2z4
t − 1

)

yt

)

(12.1)

ṽt = ṽs + 𝜅v(𝜃v − ṽ+s )Δt + 𝜎v

√

ṽ+s
√
Δtz2

t (12.2)
vt = ṽ+t

r̃t = r̃s + 𝜅r(𝜃r − r̃+s )Δt + 𝜎r

√

r̃+s
√
Δtz3

t
rt = r̃+t (12.3)
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F IGURE 12.1 Ten simulated short rate paths from calibrated CIR85 model for a
time horizon of 1 year (starting 30. September 2014) and 25 time intervals

F IGURE 12.2 Ten simulated volatility paths from calibrated BCC97 model for a
time horizon of 1 year (starting 30. September 2014) and 25 time intervals

for t ∈ {Δt,… , T} with r̄t ≡ (rt + rs)∕2, the zn
t being standard normally distributed and the yt

being Poisson distributed with intensity 𝜆. Here, the z1
t and z2

t are correlated with 𝜌 while all
other random variables are uncorrelated.1 x+ is notation for max[x, 0].2

Sub-section 12.5.1 contains a Python script for numerically generating discrete processes
according to equations (12.1)–(12.3). From an implementation point of view, the vt and the rt
have to be calculated first because they represent input factors for the calculation of the St.

To make MCS more efficient, there are a number of so-called variance reduction tech-
niques available. Among them are control variates, antithetic paths and importance sampling

1However, the script implementing the scheme allows for arbitrary correlations.
2This discretization scheme is usually called Full Truncation, cf. Lord et al. (2006) and Chapter 10.
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FIGURE 12.3 Ten simulated EURO STOXX 50 level paths from calibrated BCC97 model for a
time horizon of 1 year (starting 30. September 2014) and 25 time intervals

(cf. Glasserman (2004), ch. 4). The script in sub-section 12.5.1 implements with optionality
antithetic paths and moment matching—simple forms of generic variance reduction tech-
niques. However, as Glasserman (2004), ch. 4 points out, the most efficient techniques in this
regard are those which exploit problem-specific features—something illustrated in Chapter 10
by the use of control variates.

Figures 12.1–12.4 show simulation results from the Python script. Figure 12.3 exhibits
some large jumps which finally lead to a significant deviation of the EURO STOXX 50 level
frequency distribution from log-normality (see Figure 12.4).

F IGURE 12.4 Histogram of simulated EURO STOXX 50 levels from calibrated BCC97
model after a time period of 1 year (i.e. on 30. September 2015)
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12.3 VALUATION OF EQUITY OPTIONS

12.3.1 European Opt ions

Equipped with a Python script for the simulation of the BCC97 model, valuation of European
options is only one additional step away. As in the most simple case, we “just” simulate
end-of-period index levels and calculate the MCS estimator as

CMCS
0 = B0(T)

1
I

I∑

i=1

max[ST ,i − K, 0]

The Python script in sub-section 12.5.2 uses the simulation functions from the simulation
script and scales the number of time steps with the time horizon T . The script yields, for
instance, the results as listed below (with wall times). The first parametrization—50 time steps
p.a. and 50,000 paths—leads to a systematic valuation bias with MCS estimators much too
high in general.

1 In [1]: %time compare_values(M0=50, I=50000)

2 T | K | C0 | MCS | DIFF

3 0.083 | 3050 | 193.692 | 195.584 | 1.892

4 0.083 | 3225 | 62.147 | 64.162 | 2.016

5 0.083 | 3400 | 1.967 | 2.544 | 0.577

6 0.500 | 3050 | 259.126 | 272.960 | 13.834

7 0.500 | 3225 | 146.891 | 164.333 | 17.443

8 0.500 | 3400 | 67.142 | 85.330 | 18.188

9 1.000 | 3050 | 321.419 | 344.280 | 22.861

10 1.000 | 3225 | 216.227 | 243.415 | 27.188

11 1.000 | 3400 | 133.950 | 162.403 | 28.453

12 1.500 | 3050 | 378.978 | 407.035 | 28.057

13 1.500 | 3225 | 276.942 | 309.251 | 32.309

14 1.500 | 3400 | 193.333 | 227.887 | 34.554

15 2.000 | 3050 | 435.337 | 470.659 | 35.322

16 2.000 | 3225 | 335.010 | 374.315 | 39.305

17 2.000 | 3400 | 250.314 | 291.888 | 41.574

18 3.000 | 3050 | 549.127 | 594.413 | 45.287

19 3.000 | 3225 | 450.522 | 499.873 | 49.350

20 3.000 | 3400 | 364.049 | 416.300 | 52.252

21 CPU times: user 5.77 s, sys: 164 ms, total: 5.93 s

22 Wall time: 5.93 s

Increasing the number of paths does not really help with valuation accuracy in this case.

1 In [2]: %time compare_values(M0=50, I=200000)

2 T | K | C0 | MCS | DIFF

3 0.083 | 3050 | 193.692 | 195.870 | 2.178

4 0.083 | 3225 | 62.147 | 64.609 | 2.462
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5 0.083 | 3400 | 1.967 | 2.606 | 0.639

6 0.500 | 3050 | 259.126 | 273.046 | 13.920

7 0.500 | 3225 | 146.891 | 164.698 | 17.807

8 0.500 | 3400 | 67.142 | 85.852 | 18.710

9 1.000 | 3050 | 321.419 | 342.696 | 21.277

10 1.000 | 3225 | 216.227 | 241.375 | 25.148

11 1.000 | 3400 | 133.950 | 160.706 | 26.756

12 1.500 | 3050 | 378.978 | 407.341 | 28.363

13 1.500 | 3225 | 276.942 | 309.124 | 32.182

14 1.500 | 3400 | 193.333 | 227.473 | 34.140

15 2.000 | 3050 | 435.337 | 470.323 | 34.986

16 2.000 | 3225 | 335.010 | 373.940 | 38.930

17 2.000 | 3400 | 250.314 | 291.583 | 41.268

18 3.000 | 3050 | 549.127 | 597.571 | 48.444

19 3.000 | 3225 | 450.522 | 503.362 | 52.840

20 3.000 | 3400 | 364.049 | 420.019 | 55.970

21 CPU times: user 23.2 s, sys: 848 ms, total: 24.1 s

22 Wall time: 24.1 s

However, increasing the number of time steps used for the discretization has a huge
impact.

1 In [3]: %time compare_values(M0=200, I=50000)

2 T | K | C0 | MCS | DIFF

3 0.083 | 3050 | 193.692 | 193.241 | -0.450

4 0.083 | 3225 | 62.147 | 61.595 | -0.552

5 0.083 | 3400 | 1.967 | 2.581 | 0.614

6 0.500 | 3050 | 259.126 | 259.140 | 0.014

7 0.500 | 3225 | 146.891 | 149.090 | 2.199

8 0.500 | 3400 | 67.142 | 71.122 | 3.980

9 1.000 | 3050 | 321.419 | 322.117 | 0.697

10 1.000 | 3225 | 216.227 | 219.528 | 3.301

11 1.000 | 3400 | 133.950 | 139.285 | 5.335

12 1.500 | 3050 | 378.978 | 377.499 | -1.479

13 1.500 | 3225 | 276.942 | 278.276 | 1.334

14 1.500 | 3400 | 193.333 | 197.137 | 3.804

15 2.000 | 3050 | 435.337 | 435.067 | -0.270

16 2.000 | 3225 | 335.010 | 337.597 | 2.587

17 2.000 | 3400 | 250.314 | 255.541 | 5.227

18 3.000 | 3050 | 549.127 | 552.842 | 3.715

19 3.000 | 3225 | 450.522 | 457.774 | 7.252

20 3.000 | 3400 | 364.049 | 374.340 | 10.291

21 CPU times: user 21.8 s, sys: 914 ms, total: 22.7 s

22 Wall time: 22.7 s

23
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Too few time steps obviously lead to a systematic valuation bias. Increasing the number of
paths does not really help—however, increasing the number of time steps leads to significant
accuracy improvements with valuation errors being much smaller and both positive as well as
negative. This makes clear that using Euler discretization schemes makes a large number of
time steps necessary to achieve sufficient accuracy with such complex models.

12.3.2 American Opt ions

Now we can add the LSM algorithm to the script—see sub-section 12.5.3—to value put options
with American, i.e. early, exercise feature. The script generates, for instance, the following
results, illustrating the early exercise premium for American put options vs. their European
counterparts (for longer maturities):

1 In [4]: %time lsm_compare_values(M0=150, I=50000)

2 T | K | P0 | LSM | DIFF

3 0.083 | 3050 | 17.681 | 17.431 | -0.250

4 0.083 | 3225 | 61.131 | 61.001 | -0.130

5 0.083 | 3400 | 175.947 | 181.565 | 5.619

6 0.500 | 3050 | 77.963 | 84.277 | 6.314

7 0.500 | 3225 | 140.428 | 149.270 | 8.842

8 0.500 | 3400 | 235.379 | 246.148 | 10.769

9 1.000 | 3050 | 124.220 | 136.155 | 11.934

10 1.000 | 3225 | 192.808 | 207.958 | 15.149

11 1.000 | 3400 | 284.311 | 302.051 | 17.740

12 1.500 | 3050 | 155.970 | 174.835 | 18.865

13 1.500 | 3225 | 226.234 | 250.278 | 24.044

14 1.500 | 3400 | 314.923 | 344.215 | 29.292

15 2.000 | 3050 | 177.841 | 206.460 | 28.619

16 2.000 | 3225 | 247.834 | 282.910 | 35.077

17 2.000 | 3400 | 333.458 | 376.640 | 43.182

18 3.000 | 3050 | 201.032 | 249.858 | 48.826

19 3.000 | 3225 | 267.549 | 328.487 | 60.937

20 3.000 | 3400 | 346.197 | 421.464 | 75.267

21 CPU times: user 37.1 s, sys: 935 ms, total: 38 s

22 Wall time: 38 s

23

Obviously, the early exercise premium rises with an increase in time-to-maturity.

12.4 CONCLUSIONS

This chapter illustrates how to numerically evaluate the general market model—based on
the calibrated model parameters—by the means of Monte Carlo simulation. It also values
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European as well as American call options by simulation. In a sense, it merely glues together
the single pieces worked out in previous chapters to finally arrive at a market-based valuation
of European and American index options.

12.5 PYTHON SCRIPTS

12.5.1 Simulat ing the BCC97 Model

#

# Monte Carlo Simulation of BCC97 Model

# 12_val/BCC97_simulation.py

#

# (c) Dr. Yves J. Hilpisch

# Derivatives Analytics with Python

#

import sys

sys.path.append('11_cal')

import math

import numpy as np

import matplotlib as mpl

mpl.rcParams['font.family'] = 'serif'

import matplotlib.pyplot as plt

from H93_calibration import S0, kappa_r, theta_r, sigma_r, r0

#

# Model Parameters

#

opt = np.load('11_cal/opt_full.npy')

kappa_v, theta_v, sigma_v, rho, v0, lamb, mu, delta = opt

#

# Simulation Parameters

#

T = 1.0 # time horizon

M = 25 # time steps

I = 10000 # number of replications per valuation

anti_paths = True # antithetic paths for variance reduction

moment_matching = True # moment matching for variance reduction

np.random.seed(100000) # seed value for random number generator

#

# Random Number Generation

#
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def generate_cholesky(rho):

''' Function to generate Cholesky matrix.

Parameters

==========

rho: float

correlation between index level and variance

Returns

=======

matrix: NumPy array

Cholesky matrix

'''

rho_rs = 0 # correlation between index level and short rate

covariance = np.zeros((4, 4), dtype=np.float)

covariance[0] = [1.0, rho_rs, 0.0, 0.0]

covariance[1] = [rho_rs, 1.0, rho, 0.0]

covariance[2] = [0.0, rho, 1.0, 0.0]

covariance[3] = [0.0, 0.0, 0.0, 1.0]

cho_matrix = np.linalg.cholesky(covariance)

return cho_matrix

def random_number_generator(M, I, anti_paths, moment_matching):

''' Function to generate pseudo-random numbers.

Parameters

==========

M: int

time steps

I: int

number of simulation paths

anti_paths: bool

flag for antithetic paths

moment_matching: bool

flag for moment matching

Returns

=======

rand: NumPy array

random number array

'''

if anti_paths:

rand = np.random.standard_normal((4, M + 1, I / 2))

rand = np.concatenate((rand, -rand), 2)

else:

rand = np.random.standard_normal((4, M + 1, I))
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if moment_matching:

for a in range(4):

rand[a] = rand[a] / np.std(rand[a])

rand[a] = rand[a] - np.mean(rand[a])

return rand

#

# Function for Short Rate and Volatility Processes

#

def SRD_generate_paths(x0, kappa, theta, sigma, T, M, I,

rand, row, cho_matrix):

''' Function to simulate Square-Root Difussion (SRD/CIR) process.

Parameters

==========

x0: float

initial value

kappa: float

mean-reversion factor

theta: float

long-run mean

sigma: float

volatility factor

T: float

final date/time horizon

M: int

number of time steps

I: int

number of paths

row: int

row number for random numbers

cho_matrix: NumPy array

Cholesky matrix

Returns

=======

x: NumPy array

simulated variance paths

'''

dt = T / M

x = np.zeros((M + 1, I), dtype=np.float)

x[0] = x0

xh = np.zeros_like(x)

xh[0] = x0

sdt = math.sqrt(dt)

for t in range(1, M + 1):
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ran = np.dot(cho_matrix, rand[:, t])

xh[t] = (xh[t - 1] + kappa * (theta -

np.maximum(0, xh[t - 1])) * dt +

np.sqrt(np.maximum(0, xh[t - 1])) * sigma * ran[row] * sdt)

x[t] = np.maximum(0, xh[t])

return x

#

# Function for B96 Index Process

#

def B96_generate_paths(S0, r, v, lamb, mu, delta, rand, row1, row2,

cho_matrix, T, M, I, moment_matching):

''' Simulation of Bates (1996) index process.

Parameters

==========

S0: float

initial value

r: NumPy array

simulated short rate paths

v: NumPy array

simulated variance paths

lamb: float

jump intensity

mu: float

expected jump size

delta: float

standard deviation of jump

rand: NumPy array

random number array

row1, row2: int

rows/matrices of random number array to use

cho_matrix: NumPy array

Cholesky matrix

T: float

time horizon, maturity

M: int

number of time intervals, steps

I: int

number of paths to simulate

moment_matching: bool

flag for moment matching

Returns

=======

S: NumPy array

simulated index level paths
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'''

S = np.zeros((M + 1, I), dtype=np.float)

S[0] = S0

dt = T / M

sdt = math.sqrt(dt)

ranp = np.random.poisson(lamb * dt, (M + 1, I))

rj = lamb * (math.exp(mu + 0.5 * delta ** 2) - 1)

bias = 0.0

for t in xrange(1, M + 1, 1):

ran = np.dot(cho_matrix, rand[:, t, :])

if moment_matching:

bias = np.mean(np.sqrt(v[t]) * ran[row1] * sdt)

S[t] = S[t - 1] * (np.exp(((r[t] + r[t -1]) / 2 - 0.5 * v[t]) * dt +

np.sqrt(v[t]) * ran[row1] * sdt - bias)

+ (np.exp(mu + delta * ran[row2]) - 1) * ranp[t])

return S

if __name__ == '__main__':

#

# Simulation

#

cho_matrix = generate_cholesky(rho)

rand = random_number_generator(M, I, anti_paths, moment_matching)

r = SRD_generate_paths(r0, kappa_r, theta_r, sigma_r, T, M, I,

rand, 0, cho_matrix)

v = SRD_generate_paths(v0, kappa_v, theta_v, sigma_v, T, M, I,

rand, 2, cho_matrix)

S = B96_generate_paths(S0, r, v, lamb, mu, delta, rand, 1, 3,

cho_matrix, T, M, I, moment_matching)

def plot_rate_paths(r):

plt.figure(figsize=(8, 4))

plt.plot(r[:, :10])

plt.xlabel('time step')

plt.ylabel('short rate level')

plt.title('Short Rate Simulated Paths')

plt.grid()

def plot_volatility_paths(v):

plt.figure(figsize=(8, 4))

plt.plot(np.sqrt(v[:, :10]))

plt.xlabel('time step')

plt.ylabel('volatility level')

plt.title('Volatility Simulated Paths')

plt.grid()
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def plot_index_paths(S):

plt.figure(figsize=(8, 4))

plt.plot(S[:, :10])

plt.xlabel('time step')

plt.ylabel('index level')

plt.title('EURO STOXX 50 Simulated Paths')

plt.grid()

def plot_index_histogram(S):

plt.figure(figsize=(8, 4))

plt.hist(S[-1], bins=30)

plt.xlabel('index level')

plt.ylabel('frequency')

plt.title('EURO STOXX 50 Values after 1 Year')

plt.grid()

12.5.2 Valuat ion of European Cal l Opt ions by MCS

#

# Valuation of European Options in BCC97 Model

# by Monte Carlo Simulation

# 12_val/BCC97_valuation_comparison.py

#

# (c) Dr. Yves J. Hilpisch

# Derivatives Analytics with Python

#

import sys

sys.path.extend(['09_gmm', '10_mcs'])

import math

from BCC_option_valuation import *

from CIR_zcb_valuation_gen import B

from BCC97_simulation import *

#

# Parameters

#

t_list = [1 / 12., 0.5, 1.0, 1.5, 2.0, 3.0]

k_list = [3050, 3225, 3400]

#

# Valuation for Different Strikes & Maturities

#

def compare_values(M0=50, I=50000):

results = []

for T in t_list:
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#

# Simulation

#

M = int(M0 * T)

cho_matrix = generate_cholesky(rho)

rand = random_number_generator(M, I, anti_paths, moment_matching)

r = SRD_generate_paths(r0, kappa_r, theta_r, sigma_r, T, M, I,

rand, 0, cho_matrix)

v = SRD_generate_paths(v0, kappa_v, theta_v, sigma_v, T, M, I,

rand, 2, cho_matrix)

S = B96_generate_paths(S0, r, v, lamb, mu, delta, rand, 1, 3,

cho_matrix, T, M, I, moment_matching)

for K in k_list:

#

# Valuation

#

h = np.maximum(S[-1] - K, 0)

B0T = B([r0, kappa_r, theta_r, sigma_r, 0.0, T])

V0_mcs = B0T * np.sum(h) / I # MCS estimator

#

# European Call Option via Fourier

#

ra = -math.log(B0T) / T # average short rate/yield

C0 = BCC_call_value(S0, K, T, ra, kappa_v, theta_v, sigma_v,

rho, v0, lamb, mu, delta)

results.append((T, K, C0, V0_mcs, V0_mcs - C0))

print " %6s | %6s | %7s | %7s | %7s" % ('T', 'K', 'C0', 'MCS', 'DIFF')

for res in results:

print " %6.3f | %6d | %7.3f | %7.3f | %7.3f" % res

12.5.3 Valuat ion of American Cal l Opt ions by MCS

#

# Valuation of American Options in BCC97 Model

# by Least-Squares Monte Carlo Algorithm

# 12_val/BCC97_american_valuation.py

#

# (c) Dr. Yves J. Hilpisch

# Derivatives Analytics with Python

#

import sys

sys.path.extend(['09_gmm', '10_mcs'])

import math

from BCC_option_valuation import *
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from CIR_zcb_valuation_gen import B

from BCC97_simulation import *

#

# Additional Parameters

#

D = 10 # number of basis functions

t_list = [1 / 12., 0.5, 1.0, 1.5, 2.0, 3.0]

k_list = [3050, 3225, 3400]

#

# LSM Valuation Function

#

def BCC97_lsm_valuation(S, r, v, K, T, M, I):

''' Function to value American put options by LSM algorithm.

Parameters

==========

S: NumPy array

simulated index level paths

r: NumPy array

simulated short rate paths

v: NumPy array

simulated variance paths

K: float

strike of the put option

T: float

final date/time horizon

M: int

number of time steps

I: int

number of paths

Returns

=======

LSM_value: float

LSM Monte Carlo estimator of American put option value

'''

dt = T / M

# inner value matrix

h = np.maximum(K - S, 0)

# value/cash flow matrix

V = np.maximum(K - S, 0)

for t in xrange(M - 1, 0, -1):

df = np.exp(-(r[t] + r[t + 1]) / 2 * dt)

# select only ITM paths

itm = np.greater(h[t], 0)

relevant = np.nonzero(itm)
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rel_S = np.compress(itm, S[t])

no_itm = len(rel_S)

if no_itm == 0:

cv = np.zeros((I), dtype=np.float)

else:

rel_v = np.compress(itm, v[t])

rel_r = np.compress(itm, r[t])

rel_V = (np.compress(itm, V[t + 1])

* np.compress(itm, df))

matrix = np.zeros((D + 1, no_itm), dtype=np.float)

matrix[10] = rel_S * rel_v * rel_r

matrix[9] = rel_S * rel_v

matrix[8] = rel_S * rel_r

matrix[7] = rel_v * rel_r

matrix[6] = rel_S ** 2

matrix[5] = rel_v ** 2

matrix[4] = rel_r ** 2

matrix[3] = rel_S

matrix[2] = rel_v

matrix[1] = rel_r

matrix[0] = 1

reg = np.linalg.lstsq(matrix.transpose(), rel_V)

cv = np.dot(reg[0], matrix)

erg = np.zeros((I), dtype=np.float)

np.put(erg, relevant, cv)

V[t] = np.where(h[t] > erg, h[t], V[t + 1] * df)

# exercise decision

df = np.exp(-((r[0] + r[1]) / 2) * dt)

LSM_value = max(np.sum(V[1, :] * df) / I, h[0, 0]) # LSM estimator

return LSM_value

#

# Valuation for Different Strikes & Maturities

#

def lsm_compare_values(M0=50, I=50000):

results = []

for T in t_list:

#

# Simulation

#

M = int(M0 * T)

cho_matrix = generate_cholesky(rho)

rand = random_number_generator(M, I, anti_paths, moment_matching)

r = SRD_generate_paths(r0, kappa_r, theta_r, sigma_r, T, M, I,

rand, 0, cho_matrix)

v = SRD_generate_paths(v0, kappa_v, theta_v, sigma_v, T, M, I,

rand, 2, cho_matrix)
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S = B96_generate_paths(S0, r, v, lamb, mu, delta, rand, 1, 3,

cho_matrix, T, M, I, moment_matching)

for K in k_list:

#

# Valuation

#

h = np.maximum(S[-1] - K, 0)

B0T = B([r0, kappa_r, theta_r, sigma_r, 0.0, T])

V0_lsm = BCC97_lsm_valuation(S, r, v, K, T, M, I)

# LSM estimator

#

# European Call Option via Fourier

#

ra = -math.log(B0T) / T # average short rate/yield

C0 = BCC_call_value(S0, K, T, ra, kappa_v, theta_v, sigma_v,

rho, v0, lamb, mu, delta)

P0 = C0 + K * B0T - S0

results.append((T, K, P0, V0_lsm, V0_lsm - P0))

print " %6s | %6s | %7s | %7s | %7s" % ('T', 'K', 'P0', 'LSM', 'DIFF')

for res in results:

print " %6.3f | %6d | %7.3f | %7.3f | %7.3f" % res



CHAPTER 13
Dynamic Hedging

13.1 INTRODUCTION

In a friction-less market, dynamic delta hedging is a perfect method to hedge against price
changes of a derivative instrument when the underlying of the option is the only source of
risk, its price paths are continuous and volatility is constant. This is, for example, the case
in the benchmark model of Black-Scholes-Merton (BSM, cf. Wilmott et al. (1995), ch. 3). In
fact, it is one approach—another one being an equilibrium argument—to come up with the
famous analytical formula of BSM. Independent of the particular model at hand, the delta of,
for example, a put option P is defined by the first derivative of the option’s value with respect
to the value of the underlying S

ΔP
t ≡

𝜕Pt

𝜕St

Delta hedging the put P then says that adding −ΔP
t units of the underlying at time t to the

put option completely neutralizes the price changes in the put option due to changes in the
underlying. One then has for all t that

dPt − ΔP
t dSt = 0

Investment banks are also often interested in replicating the payoff of such a put (or
another option). This is accomplished by setting up a replication portfolio consisting of ΔP

t
units of the underlying and 𝛾t ≡ Pt − ΔP

t St units of the risk-less bond Bt such that the resulting
portfolio value equals the option value at any time t

Pt = ΔP
t St + 𝛾tBt

or

dPt = ΔP
t dSt + 𝛾tdBt

For a plain vanilla put option this generally implies being short the underlying (ΔP
t < 0) and

long the bond. For a call option (ΔC
t > 0) this implies the opposite.

279
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A replication strategy (ΔP
t , 𝛾t), t ∈ {0, ..., 𝜏 − Δt}, is called self-financing if for t > 0 and

𝜏 being the exercise date (i.e. 𝜏 = T for a European option)

ΔP
t St + 𝛾tBt = ΔP

t−ΔtSt + 𝛾t−ΔtBt

By the means of two simulation studies, this chapter implements the idea of dynamic
delta hedging in the BSM model (section 13.2) and the general market model of BCC97
(section 13.3), respectively. While the strategy works quite well in the BSM framework,
jumps allow us to break down the strategy frequently in the BCC97 model.

13.2 HEDGING STUDY FOR BSM MODEL

This section illustrates dynamic replication of an American put option in the BSM model.
The example is taken from the seminal paper on the LSM by Longstaff and Schwartz (2001).
We use an approximative method based on the LSM algorithm to numerically derive option
deltas. The approach comprises two parts, an initial one and one that is replicated as often as
necessary.1 These are:

� initial delta: the initial delta ΔP
0 is estimated via a difference quotient of the form

ΔP
0 ≡

PLSM
0 (S0 + 0.01) − PLSM

0 (S0)

0.01
(13.1)

where the two option values are derived from two separate LSM valuations of the put,
changing the starting value of the underlying as indicated

� subsequent deltas: all other deltas ΔP
t , t ∈ {Δt, ..., 𝜏 − Δt}, with 𝜏 being the exercise

time, are estimated via the regression function available at each time step using the same
difference quotient as before

ΔP
t ≡

V̂t(Ŝt + 0.01) − V̂t(Ŝt)

0.01
(13.2)

here, V̂t is the LSM regression estimate of the American put option value at date t given
the simulated index level Ŝt

The Python script in sub-section 13.5.1 implements this simple, approximative algorithm
for the American put option in the BSM setting.2 In the script, the replicating portfolio is

1Cf. Wallner and Wystup (2004) for the numerical estimation of price sensitivities for options with
American exercise. The method introduced here is a so-called first order approximation.
2The approach presented here is similar in spirit to that of Wang and Calfisch (2010) but is even “more
simple and approximative”.
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FIGURE 13.1 Dynamic replication of American put option in BSM model with profit at exercise

considered to be self-financing which implies that there are neither cash inflows nor out-
flows after t = 0. The respective values of the portfolio are benchmarked against an out-of-
sample valuation3 of the American put option given time t and the then current level of the
underlying St.

Figure 13.1 illustrates a replicating strategy for a randomly chosen path from the original
valuation. In this particular run, the replicating strategy has over-replicated the option’s payoff
leading to a positive difference, i.e. a profit, at the exercise date.

Figure 13.2 shows another path where the replicating strategy underperforms, leading
to a significant loss at the exercise date. Two aspects are noteworthy. First, the regression
coefficients are estimated only once at the beginning and used for every time step up to
exercise or maturity. Second, the performance of the second delta hedging program is quite
good on average in the short run but becomes worse the longer the option remains alive.
With a constant reassessment of the regression coefficients the performance of the hedge
program could be improved. In practical applications, this is what one would do at least on a
daily basis.

3This is to make sure that there is not an in-sample bias of the replicating strategy which would make
the calculated profit and loss (P&L) too optimistic.



The single position adjustments for a particular dynamic hedge might look as follows:

1 DYNAMIC HEDGING OF PUT

2 -----------------------------

3 Initial Hedge

4 Stocks -0.587

5 Bonds 25.585

6 Cost 4.469

7

8 Regular Rehedges

9 --------------------------------------------------------------------------

10 step| S_t| Port| Put| Diff| Stock| Bond| Cost|

11 1| 37.509| 3.615| 3.535| 0.079| -0.450| 20.483| 3.615|

12 2| 38.126| 3.362| 3.186| 0.176| -0.477| 21.566| 3.362|

13 3| 38.338| 3.287| 3.074| 0.212| -0.481| 21.730| 3.287|

14 4| 37.493| 3.719| 3.551| 0.168| -0.554| 24.483| 3.719|

15 5| 36.652| 4.214| 4.048| 0.166| -0.657| 28.278| 4.214|

16 6| 36.894| 4.089| 3.897| 0.192| -0.616| 26.802| 4.089|

17 7| 37.780| 3.576| 3.390| 0.186| -0.557| 24.603| 3.576|

18 8| 39.197| 2.817| 2.664| 0.153| -0.474| 21.401| 2.817|

19 9| 39.449| 2.723| 2.545| 0.178| -0.461| 20.912| 2.723|

20 10| 39.621| 2.669| 2.471| 0.198| -0.433| 19.829| 2.669|

21 11| 38.791| 3.052| 2.853| 0.199| -0.501| 22.493| 3.052|

22 12| 39.174| 2.887| 2.673| 0.214| -0.473| 21.409| 2.887|

23 13| 39.432| 2.791| 2.563| 0.227| -0.434| 19.910| 2.791|

24 14| 37.930| 3.467| 3.298| 0.169| -0.567| 24.979| 3.467|

25 15| 37.582| 3.694| 3.481| 0.213| -0.598| 26.153| 3.694|

26 16| 38.677| 3.071| 2.915| 0.157| -0.516| 23.024| 3.071|

27 17| 37.774| 3.565| 3.373| 0.191| -0.595| 26.033| 3.565|

28 18| 39.876| 2.346| 2.373| -0.027| -0.426| 19.323| 2.346|

29 19| 40.624| 2.050| 2.078| -0.028| -0.370| 17.072| 2.050|

30 20| 40.949| 1.951| 1.959| -0.008| -0.349| 16.245| 1.951|

31 21| 40.166| 2.243| 2.248| -0.004| -0.408| 18.646| 2.243|

32 22| 39.944| 2.356| 2.341| 0.015| -0.410| 18.724| 2.356|

33 23| 39.836| 2.423| 2.383| 0.040| -0.418| 19.066| 2.423|

34 24| 40.601| 2.127| 2.079| 0.048| -0.360| 16.738| 2.127|

35 25| 39.229| 2.640| 2.653| -0.013| -0.502| 22.331| 2.640|

36 26| 39.436| 2.564| 2.564| -0.000| -0.494| 22.050| 2.564|

37 27| 38.928| 2.841| 2.797| 0.044| -0.538| 23.785| 2.841|

38 28| 38.055| 3.339| 3.218| 0.121| -0.626| 27.144| 3.339|

39 29| 38.333| 3.198| 3.075| 0.123| -0.604| 26.369| 3.198|

40 30| 38.445| 3.162| 3.010| 0.152| -0.598| 26.157| 3.162|

41 31| 39.784| 2.392| 2.406| -0.014| -0.466| 20.944| 2.392|

42 32| 40.044| 2.296| 2.299| -0.002| -0.447| 20.205| 2.296|

43 33| 39.356| 2.628| 2.588| 0.040| -0.516| 22.935| 2.628|

44 34| 38.360| 3.170| 3.047| 0.123| -0.626| 27.200| 3.170|

45 35| 36.726| 4.226| 3.969| 0.257| -0.781| 32.916| 4.226|

46 36| 37.156| 3.930| 3.705| 0.225| -0.745| 31.611| 3.930|

47 37| 36.722| 4.291| 3.976| 0.314| -0.794| 33.447| 4.291|

48 MSE 0.023

49 Average Error 0.118

50 Total P&L 4.485
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FIGURE 13.2 Dynamic replication of American put option in BSM model with loss at exercise

Finally, Figure 13.3 shows the frequency distribution of the discounted P&L at exercise
of 10,000 dynamic replications for this case (see the Python script in sub-section 13.5.2).
This simulation is based on 50 time steps for the discretization and 10,000 paths. Summary
statistics are:

1 SUMMARY STATISTICS FOR P&L

2 ---------------------------------

3 Dynamic Replications 10000

4 Time Steps 50

5 Paths for Valuation 10000

6 Maximum 5.447

7 Average 0.041

8 Median 0.036

9 Minimum -11.475

10 ---------------------------------

11 CPU times: user 19 s, sys: 4 ms, total: 19 s

12 Wall time: 19 s



284 DERIVATIVES ANALYTICS WITH PYTHON

F IGURE 13.3 Frequency distribution of (discounted) P&L at exercise date of 10,000
dynamic replications of American put option in BSM model

The average hedge error is 0.4 cents only which is not too bad given the simplicity of the
approach. The highest loss is −11.37 and the highest profit +5.446 (as very exceptions).

The hedge errors (i.e. the P&L) can be controlled for by increasing both the number of
time steps and paths. This is illustrated in Figure 13.4 and by the following summary statistics
based on 200 time steps and 150,000 paths.

1 SUMMARY STATISTICS FOR P&L

2 ---------------------------------

3 Dynamic Replications 10000

4 Time Steps 200

5 Paths for Valuation 150000

6 Maximum 2.118

7 Average 0.003

8 Median 0.016

9 Minimum -1.328

10 ---------------------------------

11 CPU times: user 45.3 s, sys: 208 ms, total: 45.6 s

12 Wall time: 45.5 s
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FIGURE 13.4 Frequency distribution of (discounted) P&L at exercise date of 10,000
dynamic replications of American put option in BSM model with more time steps and
paths used

In this case, the average hedge error is 0.1 cents only while the maximum profit is 1.35
and the maximum loss is reduced to −3.66.

13.3 HEDGING STUDY FOR BCC97 MODEL

The previous section introduces a simple, approximative algorithm to delta hedge an American
option—the major advantage of it being the low computational burden which results from
recycling the regression coefficients from an initial LSM simulation run. This section now
applies this algorithm with a second order approximation formula to dynamically replicate an
American index put option in the calibrated BCC97 setting.

For 0 ≤ a ≤ 2 and ΔS
t > 0, the deltas are approximated along an index level path through

the following difference quotients:4

� initial delta: the initial delta ΔP
0 is estimated via a difference quotient of the form

ΔP
0 ≡

PLSM
0

(
S0 + (2 − a) ⋅ ΔS

0

)
− PLSM

0

(
S0 − a ⋅ ΔS

0

)

2 ⋅ ΔS
0

(13.3)

4Refer to Wallner and Wystup (2004) for this kind of second order approximation to option sensitivities.
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where the two option values are derived from two separate LSM valuations of the put,
changing the starting value of the underlying as indicated

� subsequent deltas: all other deltas ΔP
t , t ∈ {Δt, ..., 𝜏 − Δt}, with 𝜏 being the exercise

time, are estimated via the regression function available at each time step using a similar
difference quotient as before

ΔP
t ≡

V̂t

(

Ŝt + (2 − a) ⋅ ΔS
t
|
|
|
X̂t

)+
− V̂t

(

Ŝt − a ⋅ ΔS
t
|
|
|
X̂t

)+

2 ⋅ ΔS
t

(13.4)

here, V̂t is the LSM regression estimate of the American put option value5 using all
(simulated) state variables X̂t = (Ŝt, v̂t, r̂t), i.e. the index level, the variance level and the
short rate at date t

By varying a and ΔS
t one can fine-tune the approximations. In particular, it is important to

adjust ΔS
t such that it reflects the initial index level S0 and the later index levels St. Therefore,

we set for 0 ≤ t < T

ΔS
t = 0.01 ⋅ Ŝt

Figure 13.5 shows a delta hedging procedure along a specific simulated EURO STOXX
50 index level path (sub-section 13.5.3 provides the Python script for the valuation of the
American put and the dynamic delta hedging, respectively). Here, the hedge strategy super-
replicates the option, i.e. it produces a profit at maturity. In comparison, Figure 13.6 illustrates
that losses can also accumulate in significant amounts, with the portfolio value even ending in
the negatives. Finally, Figure 13.7 (cf. sub-section 13.5.4 for the script) shows the discounted
P&L of 10,000 dynamic replications. Summary statistics are:

1 SUMMARY STATISTICS FOR P&L

2 ---------------------------------

3 Dynamic Replications 10000

4 Time Steps 150

5 Paths for Valuation 150000

6 Maximum 143.354

7 Average 4.343

8 Median 15.136

9 Minimum -1014.275

10 ---------------------------------

11 CPU times: user 42.6 s, sys: 887 ms, total: 43.4 s

12 Wall time: 43.4 s

5Note that simple evaluation of the regression function could generate negative values for the option
price such that the formula truncates the estimates below zero.



Dynamic Hedging 287

FIGURE 13.5 Dynamic replication of American put option in BCC97 with profit at maturity

On average, the dynamic hedging strategy for the American put option yields a discounted
profit of 4.34 so that its application to a large options book might be justified. In that sense,
this analysis illustrates Merton’s (1976) original assumption that jump risk can (almost) be
diversified away—instead of being completely hedged away which is impossible here.

It is worthwhile emphasizing that in general a pure delta hedging strategy in such a
context cannot perform as well as for a European option in a more simple model. A major
reason for this is that delta hedging cannot account for jumps or other risk factors apart from
index risk. Figure 13.8 shows a case where a delta hedging strategy performs reasonably well
until a jump in the EURO STOXX 50 index level occurs and the option is exercised right
afterwards. As a consequence of the jump, the dynamic hedging strategy breaks down since
the replication portfolio payoff after the jump is insufficient to account for the steep increase
in the put option’s value (cf. Tankov and Voltchkova (2009) for a similar numerical example).

In summary, with regard to a single option, delta hedging is obviously not sufficient—at
least if one takes the terms “hedging” and “replication” seriously. What one rather needs is
the static or dynamic addition of other (plain vanilla) options on the same underlying to the
hedge portfolio.6

6Again, refer to Tankov and Voltchkova (2009) for this insight as well as to Cont et al. (2007) for the
implementation of hedging strategies with options in the presence of jumps.
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F IGURE 13.6 Dynamic replication of American put option in BCC97 with loss at maturity

F IGURE 13.7 Frequency distribution of (discounted) P&L at exercise date of
10,000 dynamic replications of American put option in general market model BCC97
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FIGURE 13.8 Dynamic replication of American put option in BCC97 with large loss at exercise
due to an index jump

13.4 CONCLUSIONS

This chapter analyzes the market-based dynamic hedging and replication of American index
options. As it turns out, delta hedging works quite well in the benchmark model of BSM.
However, delta hedging may break down in the general market model of BCC97 since jumps
make this model incomplete in a wider sense leading to the impossibility of perfectly replicating
options by trading in the available underlyings (or even other options to this end).

13.5 PYTHON SCRIPTS

13.5.1 LSM Delta Hedging in BSM (Single Path)

#

# Dynamic Hedging of American Put Option in BSM Model

# with Least Squares Monte Carlo

# 13_dyh/BSM_lsm_hedging_algorithm.py

#

# (c) Dr. Yves J. Hilpisch
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# Derivatives Analytics with Python

#

import math

import numpy as np

import warnings

warnings.simplefilter('ignore')

import matplotlib as mpl

mpl.rcParams['font.family'] = 'serif'

import matplotlib.pyplot as plt

#

# Parameters

#

S0 = 36.0 # initial stock value

K = 40.0 # strike price

T = 1.0 # time to maturity

r = 0.06 # risk-less short rate

sigma = 0.20 # volatility of stock value

M = 50 # number of time steps

I = 50000 # number of paths

#

# Valuation

#

D = 9 # number of regression functions

def BSM_lsm_put_value(S0, M, I):

''' Function to value an American put option by LSM algorithm.

Parameters

==========

S0: float

initial index level

M: int

number of time steps

Returns

=======

V0: float

LSM Monte Carlo estimator of American put option value

S: NumPy array

simulated index level paths

ex: NumPy array

exercise matrix

rg: NumPy array

regression coefficients
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h: NumPy array

inner value matrix

dt: float

length of time interval

'''

rand = np.random.standard_normal((M + 1, I)) # random numbers

dt = T / M # length of time interval

df = math.exp(-r * dt) # discount factor

S = np.zeros((M + 1, I), dtype=np.float) # stock price matrix

S[0] = S0 # initial values

for t in xrange(1, M + 1, 1): # stock price at t

S[t] = S[t - 1] * (np.exp((r - sigma ** 2 / 2) * dt

+ sigma * math.sqrt(dt) * rand[t]))

h = np.maximum(K - S, 0) # inner values

V = np.maximum(K - S, 0) # value matrix

ex = np.zeros((M + 1, I), dtype=np.float) # exercise matrix

C = np.zeros((M + 1, I), dtype=np.float) # continuation value matrix

rg = np.zeros((M + 1, D + 1), dtype=np.float)

# matrix for reg. coefficients

for t in range(M - 1, 0, -1):

rg[t] = np.polyfit(S[t], V[t + 1] * df, D)

# regression in step i

C[t] = np.polyval(rg[t], S[t])

# estimated continuation values

C[t] = np.where(C[t] < 0, 0., C[t])

# correction for neg C

V[t] = np.where(h[t] >= C[t],

h[t], V[t + 1] * df) # exercise decision

ex[t] = np.where(h[t] >= C[t], 1, 0)

# exercise decision (yes=1)

V0 = np.sum(V[1]) / I * df

return V0, S, ex, rg, h, dt

def BSM_hedge_run(p=0):

''' Implements delta hedging for a single path. '''

np.random.seed(50000)

#

# Initial Delta

#

ds = 0.01

V_1, S, ex, rg, h, dt = BSM_lsm_put_value(S0 + ds, M, I)

V_2 = BSM_lsm_put_value(S0, M, I)[0]

del_0 = (V_1 - V_2) / ds

#

# Dynamic Hedging

#
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delt = np.zeros(M + 1, dtype=np.float) # vector for deltas

print

print "APPROXIMATION OF FIRST ORDER "

print "-----------------------------"

print " %7s | %7s | %7s " % ('step', 'S_t', 'Delta')

for t in xrange(1, M, 1):

if ex[t, p] == 0: # if option is alive

St = S[t, p] # relevant index level

diff = (np.polyval(rg[t], St + ds) -

np.polyval(rg[t], St))

# numerator of difference quotient

delt[t] = diff / ds # delta as difference quotient

print " %7d | %7.2f | %7.2f" % (t, St, delt[t])

if (S[t, p] - S[t - 1, p]) * (delt[t] - delt[t - 1]) < 0:

print " wrong"

else:

break

delt[0] = del_0

print

print "DYNAMIC HEDGING OF AMERICAN PUT (BSM)"

print "---------------------------------------"

po = np.zeros(t, dtype=np.float) # vector for portfolio values

vt = np.zeros(t, dtype=np.float) # vector for option values

vt[0] = V_1

po[0] = V_1

bo = V_1 - delt[0] * S0 # bond position value

print "Initial Hedge"

print "Stocks %8.3f" % delt[0]

print "Bonds %8.3f" % bo

print "Cost %8.3f" % (delt[0] * S0 + bo)

print

print "Regular Rehedges "

print 68 * "-"

print "step|" + 7 * " %7s|" % ('S_t', 'Port', 'Put',

'Diff', 'Stock', 'Bond', 'Cost')

for j in range(1, t, 1):

vt[j] = BSM_lsm_put_value(S[j, p], M - j, I)[0]

po[j] = delt[j - 1] * S[j, p] + bo * math.exp(r * dt)

bo = po[j] - delt[j] * S[j, p] # bond position value

print "%4d|" % j + 7 * " %7.3f|" % (S[j, p], po[j], vt[j],

(po[j] - vt[j]), delt[j], bo, delt[j] * S[j, p] + bo)

errs = po - vt # hedge errors

print "MSE %7.3f" % (np.sum(errs ** 2) / len(errs))

print "Average Error %7.3f" % (np.sum(errs) / len(errs))
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print "Total P&L %7.3f" % np.sum(errs)

return S[:, p], po, vt, errs, t

def plot_hedge_path(S, po, vt, errs, t):

#

# Graphical Output

#

tl = np.arange(t)

plt.figure(figsize=(8, 6))

plt.subplot(311)

plt.grid(True)

plt.plot(tl, S[tl], 'r')

plt.ylabel('index level')

plt.subplot(312)

plt.grid(True)

plt.plot(tl, po[tl], 'r-.', label='portfolio value', lw=2)

plt.plot(tl, vt[tl], 'b', label='option value', lw=1)

plt.ylabel('value')

plt.legend(loc=0)

ax = plt.axis()

plt.subplot(313)

plt.grid(True)

wi = 0.3

diffs = po[tl] - vt[tl]

plt.bar(tl - wi / 2, diffs, color='b', width=wi)

plt.ylabel('difference')

plt.xlabel('time step')

plt.axis([ax[0], ax[1], min(diffs) * 1.1, max(diffs) * 1.1])

plt.tight_layout()

13.5.2 LSM Delta Hedging in BSM (Mult ip le Paths)

#

# Dynamic Hedging of American Put Option in BSM Model

# with Least Squares Monte Carlo -- Histogram

# 13_dyh/BSM_lsm_hedging_histogram.py

#

# (c) Dr. Yves s. Hilpisch

# Derivatives Analytics with Python

#

from BSM_lsm_hedging_algorithm import *

def BSM_dynamic_hedge_mcs(M=50, I=10000):

''' Monte Carlo simulation of dynamic hedging paths

for American put option in BSM model. '''
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#

# Initial Delta

#

ds = 0.01

V_1, S, ex, rg, h, dt = BSM_lsm_put_value(S0 + ds, M, I)

V_2 = BSM_lsm_put_value(S0, M, I)[0]

del_0 = (V_1 - V_2) / ds

print"Value of American Put Option is %8.3f" % V_2

print"Delta t=0 is %8.3f" % del_0

#

# Dynamic Hedging Runs

#

pl_list = []

run = 0

runs = min(I, 10000)

for run in xrange(runs):

p = run

run += 1

delta = np.zeros(M + 1, dtype=np.float) # vector for deltas

for t in xrange(0, M, 1):

if ex[t - 1, p] == 0: # if option is alive

St = S[t, p] # relevant index level

diff = (np.polyval(rg[t, :], St + ds)

- np.polyval(rg[t, :], St))

# numerator of difference quotient

delta[t] = diff / ds # delta as difference quotient

else:

break

delta[0] = del_0

po = np.zeros(t, dtype=np.float) # vector for portfolio values

vt = np.zeros(t, dtype=np.float) # vector for option values

vt[0] = V_2 # initial option value

po[0] = V_2 # initial portfolio value

bo = V_2 - delta[0] * S0 # initial bond position value

for s in range(1, t, 1): # for all times up to i-1

po[s] = delta[s - 1] * S[s, p] + bo * math.exp(r * dt)

# portfolio payoff

bo = po[s] - delta[s] * S[s, p] # bond position value

if s == t - 1: # at exercise/expiration date

vt[s] = h[s, p] # option value equals inner value

pl = (po[s] - vt[s]) * math.exp(-r * t * dt)

# discounted difference between option and portfolio value

if run % 1000 == 0:

print "run %5d p/l %8.3f" % (run, pl)

pl_list.append(pl) # collect all differences

pl_list = np.array(pl_list)
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#

# Summary Results Output

#

print "\nSUMMARY STATISTICS FOR P&L"

print "---------------------------------"

print "Dynamic Replications %12d" % runs

print "Time Steps %12d" % M

print "Paths for Valuation %12d" % I

print "Maximum %12.3f" % max(pl_list)

print "Average %12.3f" % np.mean(pl_list)

print "Median %12.3f" % np.median(pl_list)

print "Minimum %12.3f" % min(pl_list)

print "---------------------------------"

return pl_list

def plot_hedge_histogram(pl_list):

''' Plot of P/L histogram. '''

#

# Graphical Output

#

plt.figure(figsize=(8, 6))

plt.grid()

plt.hist(pl_list, 75)

plt.xlabel('profit/loss')

plt.ylabel('frequency')

13.5.3 LSM Algorithm for American Put in BCC97

#

# Delta Hedging an American Put Option in BCC97

# via Least Squares Monte Carlo (Multiple Replications)

# 13_dyh/BCC97_lsm_hedging_algorithm.py

#

# (c) Dr. Yves J. Hilpisch

# Derivatives Analytics with Python

#

import sys

sys.path.extend(['09_gmm', '11_cal', '12_val'])

import math

import numpy as np

import warnings

warnings.simplefilter('ignore')
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import matplotlib as mpl

mpl.rcParams['font.family'] = 'serif'

import matplotlib.pyplot as plt

from H93_calibration import S0, kappa_r, theta_r, sigma_r, r0

from BCC97_simulation import *

from BSM_lsm_hedging_algorithm import plot_hedge_path

#

# Model Parameters

#

opt = np.load('11_cal/opt_full.npy')

kappa_v, theta_v, sigma_v, rho, v0, lamb, mu, delta = opt

#

# Simulation

#

K = S0

T = 1.0

M = 50

I = 50000

a = 1.0 # a from the interval [0.0, 2.0]

dis = 0.01 # change of S[t] in percent to estimate derivative

dt = T / M

moment_matching = True

def BCC97_lsm_put_value(S0, K, T, M, I):

''' Function to value American put options by LSM algorithm.

Parameters

==========

S0: float

intial index level

K: float

strike of the put option

T: float

final date/time horizon

M: int

number of time steps

I: int

number of paths

Returns

=======

V0: float

LSM Monte Carlo estimator of American put option value

S: NumPy array

simulated index level paths
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r: NumPy array

simulated short rate paths

v: NumPy array

simulated variance paths

ex: NumPy array

exercise matrix

rg: NumPy array

regression coefficients

h: NumPy array

inner value matrix

dt: float

length of time interval

'''

dt = T / M

# Cholesky Matrix

cho_matrix = generate_cholesky(rho)

# Random Numbers

rand = random_number_generator(M, I, anti_paths, moment_matching)

# Short Rate Process Simulation

r = SRD_generate_paths(r0, kappa_r, theta_r, sigma_r, T, M, I,

rand, 0, cho_matrix)

# Variance Process Simulation

v = SRD_generate_paths(v0, kappa_v, theta_v, sigma_v, T, M, I,

rand, 2, cho_matrix)

# Index Level Process Simulation

S = B96_generate_paths(S0, r, v, lamb, mu, delta, rand, 1, 3,

cho_matrix, T, M, I, moment_matching)

h = np.maximum(K - S, 0) # inner value matrix

V = np.maximum(K - S, 0) # value/cash flow matrix

ex = np.zeros_like(V) # exercise matrix

D = 10 # number of regression functions

rg = np.zeros((M + 1, D + 1), dtype=np.float)

# matrix for regression parameters

for t in xrange(M - 1, 0, -1):

df = np.exp(-(r[t] + r[t + 1]) / 2 * dt)

# select only ITM paths

itm = np.greater(h[t], 0)

relevant = np.nonzero(itm)

rel_S = np.compress(itm, S[t])

no_itm = len(rel_S)

if no_itm == 0:

cv = np.zeros((I), dtype=np.float)

else:

rel_v = np.compress(itm, v[t])

rel_r = np.compress(itm, r[t])

rel_V = (np.compress(itm, V[t + 1])

* np.compress(itm, df))
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matrix = np.zeros((D + 1, no_itm), dtype=np.float)

matrix[10] = rel_S * rel_v * rel_r

matrix[9] = rel_S * rel_v

matrix[8] = rel_S * rel_r

matrix[7] = rel_v * rel_r

matrix[6] = rel_S ** 2

matrix[5] = rel_v ** 2

matrix[4] = rel_r ** 2

matrix[3] = rel_S

matrix[2] = rel_v

matrix[1] = rel_r

matrix[0] = 1

rg[t] = np.linalg.lstsq(matrix.transpose(), rel_V)[0]

cv = np.dot(rg[t], matrix)

erg = np.zeros((I), dtype=np.float)

np.put(erg, relevant, cv)

V[t] = np.where(h[t] > erg, h[t], V[t + 1] * df)

# value array

ex[t] = np.where(h[t] > erg, 1, 0)

# exercise decision

df = np.exp(-((r[0] + r[1]) / 2) * dt)

V0 = max(np.sum(V[1, :] * df) / I, h[0, 0]) # LSM estimator

return V0, S, r, v, ex, rg, h, dt

def BCC97_hedge_run(p):

''' Implements delta hedging for a single path. '''

#

# Initializations

#

np.random.seed(50000)

po = np.zeros(M + 1, dtype=np.float) # vector for portfolio values

vt = np.zeros(M + 1, dtype=np.float) # vector for option values

delt = np.zeros(M + 1, dtype=np.float) # vector for deltas

# random path selection ('real path')

print

print "DYNAMIC HEDGING OF AMERICAN PUT (BCC97)"

print "---------------------------------------"

ds = dis * S0

V_1, S, r, v, ex, rg, h, dt = BCC97_lsm_put_value(S0 + (2 - a) * ds,

K, T, M, I)

# 'data basis' for delta hedging

V_2 = BCC97_lsm_put_value(S0 - a * ds, K, T, M, I)[0]

delt[0] = (V_1 - V_2) / (2 * ds)

V0LSM = BCC97_lsm_put_value(S0, K, T, M, I)[0]

# initial option value for S0

vt[0] = V0LSM # initial option values

po[0] = V0LSM # initial portfolio values

bo = V0LSM - delt[0] * S0 # initial bond position value
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print "Initial Hedge"

print "Stocks %8.3f" % delt[0]

print "Bonds %8.3f" % bo

print "Cost %8.3f" % (delt[0] * S0 + bo)

print

print "Regular Rehedges "

print 82 * "-"

print "step|" + 7 * " %9s|" % ('S_t', 'Port', 'Put',

'Diff', 'Stock', 'Bond', 'Cost')

for t in range(1, M + 1, 1):

if ex[t, p] == 0:

df = math.exp((r[t, p] + r[t - 1, p]) / 2 * dt)

if t != M:

po[t] = delt[t - 1] * S[t, p] + bo * df

vt[t] = BCC97_lsm_put_value(S[t, p], K, T - t * dt,

M - t, I)[0]

ds = dis * S[t, p]

sd = S[t, p] + (2 - a) * ds # disturbed index level

stateV_A = [sd * v[t, p] * r[t, p],

sd * v[t, p],

sd * r[t, p],

v[t, p] * r[t, p],

sd ** 2,

v[t, p] ** 2,

r[t, p] ** 2,

sd,

v[t, p],

r[t, p],

1]

# state vector for S[t, p] + (2.0 - a) * dis

stateV_A.reverse()

V0A = max(0, np.dot(rg[t], stateV_A))

# print V0A

# revaluation via regression

sd = S[t, p] - a * ds # disturbed index level

stateV_B = [sd * v[t, p] * r[t, p],

sd * v[t, p],

sd * r[t, p],

v[t, p] * r[t, p],

sd ** 2,

v[t, p] ** 2,

r[t, p] ** 2,

sd,

v[t, p],

r[t, p],

1]

# state vector for S[t, p] - a * dis
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stateV_B.reverse()

V0B = max(0, np.dot(rg[t], stateV_B))

# print V0B

# revaluation via regression

delt[t] = (V0A - V0B) / (2 * ds)

bo = po[t] - delt[t] * S[t, p] # bond position value

else:

po[t] = delt[t - 1] * S[t, p] + bo * df

vt[t] = h[t, p]

# inner value at final date

delt[t] = 0.0

print "%4d|" % t + 7 * " %9.3f|" % (S[t, p], po[t], vt[t],

(po[t] - vt[t]), delt[t], bo, delt[t] * S[t, p] + bo)

else:

po[t] = delt[t - 1] * S[t, p] + bo * df

vt[t] = h[t, p]

break

errs = po - vt # hedge errors

print "MSE %7.3f" % (np.sum(errs ** 2) / len(errs))

print "Average Error %7.3f" % (np.sum(errs) / len(errs))

print "Total P&L %7.3f" % np.sum(errs)

return S[:, p], po, vt, errs, t

13.5.4 LSM Delta Hedging in BCC97 (Sing le Path)

#

# Delta Hedging an American Put Option in BCC97

# via Least Squares Monte Carlo (Multiple Replications)

# 13_dyh/BCC97_lsm_hedging_histogram.py

#

# (c) Dr. Yves s. Hilpisch

# Derivatives Analytics with Python

#

from BCC97_lsm_hedging_algorithm import *

from CIR_zcb_valuation_gen import B

from BSM_lsm_hedging_histogram import plot_hedge_histogram

#

# Simulation

#

T = 1.0

a = 1.0 # a from the interval [0.0, 2.0]

dis = 0.05 # change of S[t] in percent to estimate derivative

dt = T / M

np.random.seed(50000)

def BCC97_hedge_simulation(M=50, I=10000):
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''' Monte Carlo simualtion of dynamic hedging paths

for American put option in BSM model. '''

#

# Initializations

#

po = np.zeros(M + 1, dtype=np.float) # vector for portfolio values

delt = np.zeros(M + 1, dtype=np.float) # vector for deltas

ds = dis * S0

V_1, S, r, v, ex, rg, h, dt = BCC97_lsm_put_value(S0 + (2 - a) * ds,

K, T, M, I)

# 'data basis' for delta hedging

V_2 = BCC97_lsm_put_value(S0 - a * ds, K, T, M, I)[0]

delt[0] = (V_1 - V_2) / (2 * ds)

V0LSM = BCC97_lsm_put_value(S0, K, T, M, I)[0] # initial option value for S0

po[0] = V0LSM # initial portfolio values

#

# Hedge Runs

#

pl_list = []

runs = min(I, 10000)

for run in range(runs):

bo = V0LSM - delt[0] * S0 # initial bond position value

p = run

run += 1

for t in range(1, M + 1, 1):

if ex[t, p] == 0:

df = math.exp((r[t, p] + r[t - 1, p]) / 2 * dt)

if t != M:

po[t] = delt[t - 1] * S[t, p] + bo * df # portfolio payoff

ds = dis * S[t, p]

sd = S[t, p] + (2 - a) * ds # disturbed index level

stateV_A = [sd * v[t, p] * r[t, p],

sd * v[t, p],

sd * r[t, p],

v[t, p] * r[t, p],

sd ** 2,

v[t, p] ** 2,

r[t, p] ** 2,

sd,

v[t, p],

r[t, p],

1]

# state vector for S[t, p] + (2.0 - a) * ds

stateV_A.reverse()

V0A = max(0, np.dot(rg[t], stateV_A))

# revaluation via regression

sd = S[t, p] - a * ds # disturbed index level

stateV_B = [sd * v[t, p] * r[t, p],
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sd * v[t, p],

sd * r[t, p],

v[t, p] * r[t, p],

sd ** 2,

v[t, p] ** 2,

r[t, p] ** 2,

sd,

v[t, p],

r[t, p],

1]

# state vector for S[t, p] - a * ds

stateV_B.reverse()

V0B = max(0, np.dot(rg[t], stateV_B))

# revaluation via regression

delt[t] = (V0A - V0B) / (2 * ds)

else:

po[t] = delt[t - 1] * S[t, p] + bo * df

delt[t] = 0.0

bo = po[t] - delt[t] * S[t, p]

else:

po[t] = delt[t - 1] * S[t, p] + bo * df

break

alpha_t = [kappa_r, theta_r, sigma_r, r0, 0.0, t * dt]

pl = (po[t] - h[t, p]) * B(alpha_t)

if run % 1000 == 0:

print "run %5d p/l %8.3f" % (run, pl)

pl_list.append(pl)

pl_list = np.array(pl_list)

#

# Results Output

#

print "\nSUMMARY STATISTICS FOR P&L"

print "---------------------------------"

print "Dynamic Replications %12d" % runs

print "Time Steps %12d" % M

print "Paths for Valuation %12d" % I

print "Maximum %12.3f" % max(pl_list)

print "Average %12.3f" % np.mean(pl_list)

print "Median %12.3f" % np.median(pl_list)

print "Minimum %12.3f" % min(pl_list)

print "---------------------------------"

return pl_list



CHAPTER 14
Executive Summary

This book is about the market-based valuation of European and American stock index options.
It is a discipline of particular interest in derivatives analytics. To this end, it introduces—among
a number of basic tools and approaches—the general market model from Bakshi-Cao-Chen
(cf. Bakshi et al. (1997)) as a framework to accomplish the following goals:

� modeling market risks: the model should account for market risks generally affecting
index options, like index level risk, volatility risk, jump risk and interest rate risk

� efficient valuation of vanilla options: as a major requirement, the market model should be
able to value plain vanilla options, like European puts or calls on an index, in an efficient
manner; as it turns out, the Fourier transform method in combination with numerical
integration or Fast Fourier Transforms (FFT) offers a convenient approach to accomplish
this

� calibration of model parameters: equipped with efficient techniques for the valuation
of plain vanilla options, the model can then be calibrated to observed market quotes of
such instruments in order to derive a single martingale measure for the valuation of other
(exotic) index derivatives

� valuation by simulation: in general, numerical methods are necessary to value the
majority of (exotic) equity derivatives; Monte Carlo simulation (MCS) is the most flexible
one with the Least-Squares Monte Carlo (LSM) algorithm (cf. Longstaff and Schwartz
(2001)) allowing for the incorporation of early exercise features

� dynamic delta hedging: relying on the LSM algorithm, it is possible to numerically
estimate deltas for (exotic) equity derivatives even with American exercise; however, due
to market incompleteness (e.g. because of jumps) delta hedging on a stand-alone basis
is generally insufficient to hedge or replicate equity derivatives sufficiently well in the
general market model of Bakshi-Cao-Chen (1997)

The whole exposition is accompanied by a self-contained set of Python scripts which
allows the easy replication of the results and graphics presented throughout the book. All
Python codes and additional IPython Notebooks are provided on the Quant Platform under
http://wiley.quant-platform.com. For further resources see also http://derivatives-analytics-
with-python.com.
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APPENDIX A
Python in a Nutshell

T his appendix introduces into the Python language mainly by the means of simple interactive
examples and some shorter code snippets (i.e. modules and scripts). It cannot replace any

kind of proper training in this programming language or more comprehensive treatments in
book form.

By reading this appendix, you will NOT learn how to code in general or learn Python
from scratch to black belt level. However, for someone coming with C++ experience, for
example, the appendix illustrates fundamental aspects of Python that are useful for derivatives
analytics and financial engineering in general. For someone who starts out in these areas,
the topics covered provide a first glimpse at coding in general and for derivatives analytics
in particular. For this group, the appendix may act as a starting point for digging deeper into
areas of further interest.

The best Python foundation for this book can be gained by reading the recent book by
the same author (Hilpisch, 2014). That book focuses on teaching Python for finance and
covers many topics of interest in this area on more than 600 pages. Another useful book is
McKinney (2012) which introduces in detail the main data analysis tools and libraries needed
for the applications presented in this book (in particular NumPy and pandas). For general
introductions to Python from a scientific point of view, you can consult either the book by
Langtangen (2009) or the freely available lecture notes of Haenel et al. (2013).

A.1 PYTHON FUNDAMENTALS

This first section is about some important, fundamental topics when it comes to Python usage.

A.1.1 Insta l l ing Python Packages

No matter what operating system you use, make sure to install at least current versions of the
following Python packages/libraries:

� Python 2.7.x (www.python.org ): the basic Python interpreter
� NumPy (http://numpy.scipy.org): library to efficiently handle (large) arrays at high speed
� SciPy (www.scipy.org): library with many useful scientific functions
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� matplotlib (http://matplotlib.sourceforge.net): the standard 2d and 3d plotting library
� pandas (http://pandas.sourceforge.net): efficient and fast data analysis, for example, of

financial time series
� PyTables (www.pytables.org): handling of HDF5 database files for high performance I/O

operations
� IPython (www.ipython.org): interactive analytics and development environment (shell,

browser-based)
� xlrd, xlwt (www.python-excel.org): functions to work with Microsoft Excel spreadsheet

files

Having installed these packages/libraries (and maybe additional ones on which these
particular ones are dependent) allows to use all modules and scripts provided in the book and to
follow this appendix. However, installing single packages and libraries might sometimes prove
too time consuming and inefficient. It is therefore recommended to work on the Quant Platform
(cf. http://wiley.quant-platform.com) or to at least install a complete Python distribution which
comes in general with the most important libraries in those versions that are compatible with
each other.

For example, Anaconda is a distribution of a Python base system in combination with
quite a large number of useful libraries and tools for scientific purposes. It is pretty well
suited for financial application building and interactive financial analytics. The website
www.continuum.io provides current downloads and further information. It is available for
all popular operating systems. Installing a complete distribution like Anaconda is generally
relatively easy and fast. It also greatly simplifies the updating of single libraries and the
interpreter itself.

One might wonder why Python version 2.7.x is used in this book and not the newest
generation of Python which is already 3.4 at the time of this writing. There are two reasons.
First, Python 2.7.x is current (at the end of 2014) and still maintained by the Open Source
community. Second, some syntax has changed in 3.x such that the versions are not fully
compatible—and most code in the financial ecosystem and documentation available is still
based on Python 2.7.x. On the other hand, the majority of the code presented in this book is
either executable with a Python 3.4 interpreter without any changes or relatively easy to adjust
for this version.

A.1.2 F irst Steps with Python

After starting IPython, a popular and powerful interactive shell for Python, you should see
something like this on your screen:

1 yhilpisch@ONE:˜$ ipython

2 Python 2.7.8 |Anaconda 2.0.1 (64-bit)| (default, Aug 21 2014, 18:22:21)

3 Type "copyright", "credits" or "license" for more information.

4

5 IPython 2.3.0 -- An enhanced Interactive Python.

6 Anaconda is brought to you by Continuum Analytics.

7 Please check out: http://continuum.io/thanks and https://binstar.org

8 ? -> Introduction and overview of IPython's features.

www.continuum.io
http://matplotlib.sourceforge.net
http://pandas.sourceforge.net
http://www.pytables.org
http://www.ipython.org
http://www.python-excel.org
http://wiley.quant-platform.com
http://continuum.io/thanks
https://binstar.org
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9 %quickref -> Quick reference.

10 help -> Python's own help system.

11 object? -> Details about 'object', use 'object??' for extra details.

12

13 In [1]:

Before a first module (something that can be imported) or script (something that can be
executed stand-alone) is implemented, some first and simple exercises on the shell with the
interpreter may serve as a warm-up.

1 In [1]: 3 + 4

2 Out[1]: 7

3

4 In [2]: 3 / 4

5 Out[2]: 0

6

7 In [3]:

Addition seems to work well, but division apparently not. This is due to Python interpreting
3 and 4 as integers such that division gives 0 instead of 0.75. Putting a dot behind either 3 or
4 or both does the trick (i.e. one tells Python that one is working with floats).1

1 In [3]: 3.0 / 4

2 Out[3]: 0.75

3

4 In [4]:

Obviously, types are important with Python. One has to be careful since Python is a
dynamically typed language which means that there are default types which are used given
a specific context. In C++, for example, you would have to assign a certain static type to
a variable before using it. Variable names (more general: reference pointers) are defined in
Python with the = sign:

1 In [4]: a = 3

2

3 In [5]: b = 4

4

5 In [6]: a / b

6 Out[6]: 0

7

1In Python 3.x, the float division is the default setting while in Python 2.x it is the floor or integer division.
In Python 3.x, you have the following syntax for both types of division: 3 / 4 for float division and 3 // 4
for floor division.
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8 In [7]: a = 3.0

9

10 In [8]: a / b

11 Out[8]: 0.75

12

13 In [9]:

Even if the Python interpreter has already built in lots of functionality, most of it is stored
in modules or whole packages of different modules which have to be imported before usage.
An example is the math module which comes with the so-called standard library and contains,
among others, trigonometric functions.

1 In [1]: a = 3.0

2

3 In [2]: sin(a)

4 --------------------------------------------------------------------------

5 NameError Traceback (most recent call last)

6 <ipython-input-3-66bf5e82d1e2> in <module>()

7 ----> 1 sin(a)

8

9 NameError: name 'sin' is not defined

10

11 In [3]: from math import sin

12

13 In [4]: sin(a)

14 Out[4]: 0.1411200080598672

15

16 In [5]:

If you want to indicate that the sin function is from the math module (which is
recommended), you have to import the module/library itself and not the functions that are
contained therein.

1 In [5]: b = 4

2

3 In [6]: import math

4

5 In [7]: math.sin(b)

6 Out[7]: -0.7568024953079282

7

8 In [8]:
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You can easily define functions by yourself.

1 In [8]: def f(x):

2 ...: return x ** 3 + x ** 2 - 2 + math.sin(x)

3

4 In [9]: f(2)

5 Out[9]: 10.909297426825681

6

7 In [10]: f(a)

8 Out[10]: 34.141120008059865

9

10 In [11]:

Here, x ** 3 stands for x3. Generally, if you are doing something useful which you would
like to store for later use you would not work with a command line interpreter or a shell. Rather,
you would open a new file (module/script), store the function in it and save it on disk. Python
modules/scripts are characterized by the .py suffix. A new module can be generated with a
dedicated Python editor or with the most simple text editor. In fact, Python modules/scripts
are nothing more or less than text files.

In such a file, say with name a_first_program.py, you could store the previous code
like this:

#

# First Program with Python

# A_pyt/a_first_program.py

#

import math

# Variable Definition

a = 3.0

b = 4

# Function Definition

def f(x):

''' Mathematical Function. '''

return x ** 3 + x ** 2 - 2 + math.sin(x)

# Calculation

f_a = f(a)

f_b = f(b)

# Output

print "f(a) = %6.3f" % f_a

print "f(b) = %6.3f" % f_b
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The # sign allows the inclusion of comments in your code that are ignored by the Python
interpreter. Make sure when saving Python modules to always include the suffix .py. Now you
can run the script from IPython which should produce the following output:

1 In [12]: %run a_first_program.py

2 f(a) = 34.141

3 f(b) = 77.243

4

5 In [13]:

This should be enough for some very first steps with Python. This sub-section showed
how to calculate, how to evaluate a numerical expression, how to define a function and how
to write a script containing the function that can be executed.

A.1.3 Array Operat ions

NumPy is a powerful library that allows efficient array manipulations (linear algebra) in a
compact form and at high speed. The speed comes from the implementation of main parts of
the library in C. So you have the convenience of Python combined with the speed of C when
doing array operations.

1 In [1]: import numpy as np

2

3 In [2]: a = np.arange(0.0, 20.0, 1.0) # (start, end, step)

4

5 In [3]: a

6 Out[3]:

7 array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.,

8 11., 12., 13., 14., 15., 16., 17., 18., 19.])

9

10 In [4]: a.resize(4, 5)

11

12 In [5]: a

13 Out[5]:

14 array([[ 0., 1., 2., 3., 4.],

15 [ 5., 6., 7., 8., 9.],

16 [ 10., 11., 12., 13., 14.],

17 [ 15., 16., 17., 18., 19.]])

18

19 In [6]: a[0] # first row

20 Out[6]: array([ 0., 1., 2., 3., 4.])

21

22 In [7]: a[3] # fourth (=last) row

23 Out[7]: array([ 15., 16., 17., 18., 19.])

24
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25 In [8]: a[1, 4] # second row, 5th (=last) element

26 Out[8]: 9.0

27

28 In [9]: a[1, 2:4] # second row, third & forth element

29 Out[9]: array([ 7., 8.])

30

31 In [10]:

The first examples of array definition and manipulation should be self-explanatory. Care
is to be taken with the conventions regarding array indices. The best way to learn these is to
play with arrays. In particular, note that zero-based numbering is used and that slicing (see
input prompt 9) excludes the last value in the output.

With NumPy, array operations are as easy to implement as operations on integers or
floats. This is mainly due to the fact that it provides powerful vectorization and broadcasting
capabilities (cf. chapter 4 in Hilpisch (2014)).

1 In [10]: a * 0.5

2 Out[10]:

3 array([[ 0. , 0.5, 1. , 1.5, 2. ],

4 [ 2.5, 3. , 3.5, 4. , 4.5],

5 [ 5. , 5.5, 6. , 6.5, 7. ],

6 [ 7.5, 8. , 8.5, 9. , 9.5]])

7

8 In [11]: a ** 2

9 Out[11]:

10 array([[ 0., 1., 4., 9., 16.],

11 [ 25., 36., 49., 64., 81.],

12 [ 100., 121., 144., 169., 196.],

13 [ 225., 256., 289., 324., 361.]])

14

15 In [12]: a + a

16 Out[12]:

17 array([[ 0., 2., 4., 6., 8.],

18 [ 10., 12., 14., 16., 18.],

19 [ 20., 22., 24., 26., 28.],

20 [ 30., 32., 34., 36., 38.]])

21

22 In [13]:

One can also use the previously defined function f with NumPy arrays—one change is
necessary, however: one has to now use the universal functions that NumPy provides instead
of those of the math module.

1 In [13]: def f(x):

2 ...: return x ** 3 + x ** 2 - 2 + np.sin(x)
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3

4 In [14]: f(a)

5 Out[14]:

6 array([[ -2.00000000e+00, 8.41470985e-01, 1.09092974e+01,

7 3.41411200e+01, 7.72431975e+01],

8 [ 1.47041076e+02, 2.49720585e+02, 3.90656987e+02,

9 5.74989358e+02, 8.08412118e+02],

10 [ 1.09745598e+03, 1.44900001e+03, 1.86946343e+03,

11 2.36442017e+03, 2.93899061e+03],

12 [ 3.59865029e+03, 4.34971210e+03, 5.19903860e+03,

13 6.15324901e+03, 7.21814988e+03]])

14

15 In [15]:

Here, the syntax e+03 is for 103. Sometimes you need to loop over arrays to check
something or to do some calculation. Looping is also quite intuitive in Python.

1

2 In [15]: for i in xrange(5):

3 ....: print i

4 ....:

5 0

6 1

7 2

8 3

9 4

10

11 In [16]: b = np.arange(0.0, 100.0, 1.0)

12

13 In [17]: for i in range(100):

14 ...: if b[i] == 50.0:

15 ...: print "50.0 at index no. %d" % i

16 ...:

17 50.0 at index no. 50

18

19 In [18]:

Note that there is a difference between range and xrange: the first generates in one step
a list object containing all the numbers while the latter instantiates a generator object which
generates and returns values one by one (when called/needed). Like with array indexing note
the zero-based numbering and the fact that the last value is not included in the results (i.e.
xrange(5) starts at 0 and ends at 4).

The difference between arange and range is that the first can produce arrays with elements
of float type while the latter can only generate list objects containing integers; and indices



Appendix A: Python in a Nutshell 313

of arrays are always integers which is why the loop is over integers and not over floats or
something else.2

In the iteration you will find something called string replacement. %d indicates that at the
very place where it is found in the string the value of i should be shown—instead of %d. It
is convenient, for example, to “parametrize” larger strings in this way. String replacement is
also helpful when it comes to formatting:

1 In [18]: print "%d divided by %d gives %6.3f" % (1000, 17, 1000./17)

2 1000 divided by 17 gives 58.824

3

4 In [19]:

%6.3f in the string is replaced by a 6 digit long float object (including the decimal point)
with 3 decimals.

A.1.4 Random Numbers

Derivatives analytics cannot live without random numbers, be they either pseudo-random or
quasi-random. NumPy has built in convenient functions for the generation of pseudo-random
numbers in the sub-module random.3

1 In [1]: import numpy as np

2

3 In [2]: b = np.random.standard_normal((4, 5))

4

5 In [3]: b

6 Out[3]:

7 array([[ 0.73262022, -0.32977027, -0.63735777, 0.29651912, 0.92829732],

8 [ 0.06622625, 1.68082578, 0.47302614, -0.44214276, 0.54175322],

9 [-0.66753795, -0.82754659, 0.3837979 , 0.45688461, 0.44984762],

10 [-0.60468346, 1.84658194, -0.35433689, 0.50973071, 0.11169662]])

11

12 In [4]: np.sum(b)

13 Out[4]: 4.6144317809306132

14

15 In [5]: np.mean(b)

16 Out[5]: 0.23072158904653067

17

18 In [6]: np.std(b)

19 Out[6]: 0.7190698353463989

20

21 In [7]:

2On data types and structures in Python see Chapter 4 of Hilpisch (2014).
3Refer to Chapter 10 of Hilpisch (2014) for more background on generating pseudo-random numbers
and simulating random variables as well as stochastic processes.
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A.1.5 Plott ing

In interactive financial analytics, one often wants to visualize results from calculations or
simulations. The library matplotlib is quite powerful when it comes to 2d visualizations of any
kind—but also for 3d plotting. The most important types of graphics for derivatives analytics
are line and dot plots as well as bar charts and histograms.

1 In [8]: import matplotlib.pyplot as plt

2

3 In [9]: plt.plot(np.cumsum(b))

4 Out[9]: [<matplotlib.lines.Line2D at 0x37c1890>]

5

6 In [10]: plt.xlabel('x axis')

7 Out[10]: <matplotlib.text.Text at 0x343a210>

8

9 In [11]: plt.ylabel('y axis')

10 Out[11]: <matplotlib.text.Text at 0x343ec10>

11

12 In [12]: plt.grid(True)

13

14 In [13]: plt.show()

15

16 In [14]:

cumsum calculates the running cumulative sum over an array. In this case it also flattens
the two-dimensional array to a one-dimensional vector. Figure A.1 shows the output.

F IGURE A.1 Example of figure with matplotlib—here: line
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FIGURE A.2 Example of figure with matplotlib—here: dots and bars

The next example combines a dot sub-plot with a bar sub-plot the result of which is shown
in Figure A.2. Here, due to resizing of the array there is only a one-dimensional set of numbers
(i.e. the array b is flattened again).

1 In [15]: c = np.resize(b, 20)

2

3 In [16]: plt.figure()

4 Out[16]: <matplotlib.figure.Figure at 0x420a710>

5

6 In [17]: plt.subplot(211)

7 Out[17]: <matplotlib.axes.AxesSubplot at 0x47b2c10>

8

9 In [18]: plt.plot(c, 'ro') # red dots

10 Out[18]: [<matplotlib.lines.Line2D at 0x4935490>]

11

12 In [19]: plt.grid(True)

13

14 In [20]: plt.subplot(212)

15 Out[20]: <matplotlib.axes.AxesSubplot at 0x4935850>

16

17 In [21]: plt.bar(range(len(c)), c)

18 Out[21]: <Container object of 20 artists>

19

20 In [22]: plt.grid(True)

21

22 In [23]: plt.show()

23

24 In [24]:
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This is already all one needs to implement the different European option pricing algorithms
in the next section. What may be missing will be added on the fly.

A.2 EUROPEAN OPTION PRIC ING

This section now illustrates Python usage by the means of specific financial algorithms. In
particular, it implements the Black-Scholes-Merton analytical option pricing formula, the
binomial option pricing model as well as a Monte Carlo valuation algorithm.

A.2.1 Black-Scholes-Merton Approach

The seminal modelBSM of Black-Scholes-Merton (cf. Black and Scholes (1973) and Merton
(1973)) is still a benchmark for the pricing of European options on stocks and stock indices.4

The analytical call option formula without dividends is

C0(K, T) = S0 ⋅ N(d1) − e−rT ⋅ K ⋅ N(d2)

d1 ≡

log S0
K
+
(

r + 𝜎
2

2

)

T

𝜎

√
T

d2 ≡ d1 − 𝜎

√
T

where N is the cumulative distribution function (cdf) of a standard normal random variable.
The single variables have the following meaning, respectively:

� C0 call option value today
� S0 index level today
� K strike price of the option
� T time-to-maturity of the call option
� r risk-less short rate
� 𝜎 volatility of index level (standard deviation of its returns)

All we need additionally to implement the formula is the cdf for a standard normal
variable. We get this from the scipy library which contains a sub-library called stats.

#

# Valuation of European Call Option

# in Black-Scholes-Merton Model

# A_pyt/b_BSM_valuation.py

#

from scipy import stats

import math

4See Chapter 5 for details.
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# Option Parameters

S0 = 105.00 # initial index level

K = 100.00 # strike price

T = 1. # call option maturity

r = 0.05 # constant short rate

vola = 0.25 # constant volatility factor of diffusion

# Analytical Formula

def BSM_call_value(S0, K, T, r, vola):

''' Analytical European call option value for Black-Scholes-Merton (1973).

Parameters

==========
S0: float

initial index level

K: float

strike price

T: float

time-to-maturity

r: float

constant short rate

vola: float

constant volatility factor

Returns

=======
call_value: float

European call option present value

'''

S0 = float(S0) # make sure to have float type

d1 = (math.log(S0 / K) + (r + 0.5 * vola ** 2) * T) / (vola * math.sqrt(T))

d2 = d1 - vola * math.sqrt(T)

call_value = (S0 * stats.norm.cdf(d1, 0.0, 1.0)

- K * math.exp(-r * T) * stats.norm.cdf(d2, 0.0, 1.0))

return call_value

# Output

print "Value of European call option is %8.3f" \
% BSM_call_value(S0, K, T, r, vola)

The function BSM_call_value gives us a benchmark value for the European call option
with the parameters as defined in the Python script:

1 In [3]: run b_BSM_valuation.py

2 Value of European call option is 15.655

3

4 In [4]:
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A.2.2 Cox-Ross-Rubinste in Approach

To better understand how to implement the binomial option pricing model CRR of Cox-
Ross-Rubinstein (Cox et al., 1979), a little background seems helpful.5

There are two securities traded in the model: a risky stock index and a risk-less zero-
coupon bond. The time horizon [0, T] is divided into equidistant time intervals Δt so that one
gets M + 1 points in time t ∈ {0,Δt, 2Δt, ..., T} with M ≡ T∕Δt. The zero-coupon bond grows
p.a. in value with the risk-less short rate r, Bt = B0ert where B0 > 0.

Starting from a strictly positive, fixed stock index level of S0 at t = 0, the stock index
evolves according to the law

St+Δt ≡ St ⋅ m

where m is selected randomly from {u, d}. Here, 0 < d < erΔt
< u ≡ e𝜎

√
Δt as well as u ≡

1
d

as a simplification which leads to a recombining tree.
Assuming risk-neutral valuation holds, the following relationship can be derived

St = e−rΔt ⋅ EQ
t [St+Δt]

= e−rΔt ⋅ (q ⋅ u ⋅ St + (1 − q) ⋅ d ⋅ St)

Against this background, the risk-neutral (or martingale) probability is

q = erΔt − d
u − d

The value of a European call option C0 is then obtained by discounting the final payoffs
CT (ST , K) ≡ max[ST − K, 0] at t = T to t = 0:

C0 = e−rT ⋅ EQ
0 [CT ]

The discounting can be done step-by-step and node-by-node backwards starting at
t = T − Δt.

From an algorithmical point of view, one has to first generate the index level values, then
determine the final payoffs of the call option and finally discount them back. This is what we
will do now, starting with a somewhat “naive” implementation. But before we do it, we generate
a Python module which contains all parameters that we will need for different implementations
afterwards. All parameters can be imported by using the import command and the respective
filename without the suffix .py (i.e. the filename is c_parameters.py and the module name is
c_parameters).

5See also Chapter 5 for more details.
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#

# Model Parameters for European Call Option

# and Binomial Model

# A_pyt/c_parameters.py

#

import math

# Option Parameters

S0 = 105.0 # initial index level

K = 100.0 # strike price

T = 1. # call option maturity

r = 0.05 # constant short rate

vola = 0.25 # constant volatility factor of diffusion

# Time Parameters

M = 3 # time steps

dt = T / M # length of time interval

df = math.exp(-r * dt) # discount factor per time interval

# Binomial Parameters

u = math.exp(vola * math.sqrt(dt)) # up-movement

d = 1 / u # down-movement

q = (math.exp(r * dt) - d) / (u - d) # martingale probability

Here is the first version of the implemented binomial model which uses nested loop
structures extensively (as would be the case, for example, in C or C++).

#

# Valuation of European Call Option in CRR1979 Model

# Loop Version (= C-like Iterations)

# A_pyt/d_CRR1979_loop.py

#

import numpy as np

from c_parameters import *

# Array Initialization for Index Levels

S = np.zeros((M + 1, M + 1), dtype=np.float) # index level array

S[0, 0] = S0

z = 0

for j in xrange(1, M + 1, 1):

z += 1

for i in xrange(z + 1):

S[i, j] = S[0, 0] * (u ** j) * (d ** (i * 2))

# Array Initialization for Inner Values

iv = np.zeros((M + 1, M + 1), dtype=np.float) # inner value array



320 APPENDIX A: PYTHON IN A NUTSHELL

z = 0

for j in xrange(0, M + 1, 1):

for i in xrange(z + 1):

iv[i, j] = round(max(S[i, j] - K, 0), 8)

z += 1

# Valuation by Risk-Neutral Discounting

pv = np.zeros((M + 1, M + 1), dtype=np.float) # present value array

pv[:, M] = iv[:, M] # initialize last time step

z = M + 1

for j in xrange(M - 1, -1, -1):

z -= 1

for i in xrange(z):

pv[i, j] = (q * pv[i, j + 1] + (1 - q) * pv[i + 1, j + 1]) * df

# Result Output

print "Value of European call option is %8.3f" % pv[0, 0]

The command np.zeros((i, j), dtype=np.float) initializes a NumPy array object with shape
i × j where each number is of the double float type. The execution of the script gives the
following output and arrays where one can follow the three steps easily (index levels, inner
values, discounting):

1 In [3]: run d_CRR1979_Naive.py

2 Value of European call option is 16.293

3

4 In [4]: S

5 Out[4]:

6 array([[ 105. , 121.30377267, 140.13909775, 161.89905958],

7 [ 0. , 90.88752771, 105. , 121.30377267],

8 [ 0. , 0. , 78.67183517, 90.88752771],

9 [ 0. , 0. , 0. , 68.09798666]])

10

11 In [5]: iv

12 Out[5]:

13 array([[ 5. , 21.30377267, 40.13909775, 61.89905958],

14 [ 0. , 0. , 5. , 21.30377267],

15 [ 0. , 0. , 0. , 0. ],

16 [ 0. , 0. , 0. , 0. ]])

17

18 In [6]: pv

19 Out[6]:

20 array([[ 16.29293245, 26.59599847, 41.79195237, 61.89905958],

21 [ 0. , 5.61452766, 10.93666406, 21.30377267],

22 [ 0. , 0. , 0. , 0. ],

23 [ 0. , 0. , 0. , 0. ]])
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24

25 In [7]:

Our alternative version makes more use of the vectorization capabilities of NumPy—the
consequence is more compact code even if it is not so easy to read initially.

#

# Valuation of European Call Option in CRR1979 Model

# Vectorized Version (= NumPy-level Iterations)

# A_pyt/e_CRR1979_vectorized.py

#

import numpy as np

from c_parameters import *

# Array Initialization for Index Levels

mu = np.arange(M + 1)

mu = np.resize(mu, (M + 1, M + 1))

md = np.transpose(mu)

mu = u ** (mu - md)

md = d ** md

S = S0 * mu * md

# Valuation by Risk-Neutral Discounting

pv = np.maximum(S - K, 0) # present value array initialized with inner values

z = 0

for i in xrange(M - 1, -1, -1): # backwards induction

pv[0:M - z, i] = (q * pv[0:M - z, i + 1]

+ (1 - q) * pv[1:M - z + 1, i + 1]) * df

z += 1

# Result Output

print "Value of European call option is %8.3f" % pv[0, 0]

The valuation result is, as expected, the same for the parameter definitions from before.
However, three time intervals are of course not enough to come close to the Black-Scholes-
Merton benchmark of 15.6547. With 1,000 time intervals, however, the algorithms come quite
close to it:

1 In [7]: run e_CRR1979_vectorized.py

2 Value of European call option is 15.654

3

4 In [8]:

The major difference between the two algorithms is execution time. The second imple-
mentation which avoids Python iterations as much as possible is about 10 times faster than the
first one (for 1,000 time steps). You should make this a principle for your own coding efforts:
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whenever possible avoid necessary iterations (e.g. nested loops) on the Python interpreter
level and delegate them to NumPy where they are executed by optimized C code in general.
Apart from time savings, you generally also get more compact and readable code. A direct
comparison illustrates this point:

#

# Loop Version --- Iterations in Python

#

# Array Initialization for Inner Values

iv = np.zeros((M + 1, M + 1), dtype=np.float)
z = 0

for j in xrange(0, M + 1, 1):

for i in xrange(z + 1):

iv[i, j] = max(S[i, j] - K, 0)

z += 1

#

# Vectorized Version --- Iterations on NumPy Level

#

# Array Initialization for Inner Values

iv = maximum(S - K, 0)

To conclude this section, the Fast Fourier Transform (FFT) algorithm is applied to the
binomial model. Nowadays, this numerical routine plays an important role in derivatives
analytics. It is used regularly for plain vanilla option pricing in productive environments in
investment banks or hedge funds. In general, however, it is not applied to a binomial model
but the application in this case is straightforward and therefore a quick win.6

#

# Valuation of European Call Option in CRR1979 Model

# FFT Version

# A_pyt/f_CRR1979_fft.py

#

import numpy as np

from numpy.fft import fft, ifft

from c_parameters import *

# Array Generation for Index Levels

md = np.arange(M + 1)

mu = np.resize(md[-1], M + 1)

mu = u ** (mu - md)

md = d ** md

S = S0 * mu * md

6Cf. Cěrný (2004) for details of this method and its application to the binomial model. See also Chapter 6.
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# Valuation by FFT

C_T = np.maximum(S - K, 0)

Q = np.zeros(M + 1, 'd')

Q[0] = q

Q[1] = 1 - q

l = np.sqrt(M + 1)

v1 = ifft(C_T) * l

v2 = (np.sqrt(M + 1) * fft(Q) / (l * (1 + r * dt))) ** M

C_0 = fft(v1 * v2) / l

# Result Output

print "Value of European call option is %8.3f" % np.real(C_0[0])

In this script, Python loops are entirely avoided—this is possible since for European
options only the final payoffs are relevant (something one could also make use of for the
previous implementations). The speed advantage of this algorithm is again considerable: it is
100 times faster than the vectorized algorithm from before and 1,000 times faster than the
nested loop-based version (for 1,000 time steps).

A.2.3 Monte Carlo Approach

Finally, we apply Monte Carlo simulation (MCS) to value the same European call option in
the Black-Scholes-Merton model BSM . Here it is where pseudo-random numbers come into
play. As with the FFT algorithm we only care about the final index level at T and simulate
it by the use of pseudo-random numbers. We get the simple simulation algorithm shown as
Algorithm 5.7

Although the algorithm seems to imply something like “looping over arrays”, we can
again avoid array loops completely on the Python interpreter level. The Python/NumPy
implementation is really compact—only five lines of code for the core algorithm. With
another five lines we can produce a histogram of the index levels at T as displayed in
Figure A.3.

#

# Valuation of European Call Option

# via Monte Carlo Simulation

# A_pyt/g_MCS.py

#

import numpy as np

import matplotlib.pyplot as plt

from c_parameters import *

# Valuation via MCS

7Glasserman (2004) is a comprehensive reference on the Monte Carlo method applied to financial
problems and models.
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Algorithm 5: Monte Carlo Valuation Algorithm

Consider the date of maturity T and, for zT being a standard normally distributed random1

variable, write

ST = S0 ⋅ e

(

r− 1
2
𝜎

2
)

⋅T+𝜎
√

TzT

for i = 1, ..., I do
Draw a standard normally distributed pseudo-random number zT ,i2

Simulate the index level value ST ,i given equation (A.1) and zT ,i3

Determine the inner value of the call at T as max[ST ,i − K, 0]4

Sum up all inner values at T , take the average and discount back to t = 0 to arrive at the5

Monte Carlo estimator for the option value:

C0(K, T) ≈ e−rT ⋅
1
I

∑

I

max[ST (i) − K, 0]

F IGURE A.3 Histogram of simulated stock index levels at T

I = 100000 # number of simulated values for S_T

rand = np.random.standard_normal(I) # generate pseudo-random numbers

ST = S0 * np.exp((r - 0.5 * vola ** 2) * T + np.sqrt(T) * vola * rand)

# simulate I values for S_T

pv = np.sum(np.maximum(ST - K, 0) * np.exp(-r * T)) / I # MCS estimator

# Result Output

print "Value of European call option is %8.3f" % pv
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# Graphical Output

plt.figure()

plt.hist(ST, 100)

plt.xlabel('index level at T')

plt.ylabel('frequency')

plt.grid(True)

The algorithm produces a quite accurate estimate for the European call option value
although the implementation is rather simplistic (i.e. there are, for example, no variance
reduction techniques involved):

1 In [10]: run g_MCS.py

2 Value of European call option is 15.649

3

4 In [11]:

A.3 SELECTED F INANCIAL TOPICS

A.3.1 Approximat ion

It is often the case in derivatives analytics that one has to approximate some function or object
of interest to draw conclusions or apply the approximations within financial algorithms. Two
important approximation techniques are regression and interpolation.8

The type of regression we consider is called ordinary least-squares regression (OLS). In its
most simple form, monomials x, x2, x3, ... are used to approximate a desired function y = f (x)
given a number N of observations (y1, x1), (y2, x2), ..., (yN , xN). Say we want to approximate
f (x) with a polynomial of order 2, g(x) = a1 + a2 ⋅ x + a3 ⋅ x2 where the ai are regression
parameters. The task is then to solve the following minimization problem:

min
a1,a2,a3

N∑

n=1

(
yn − g(xn; a1, a2, a3)

)

As an example, we want to approximate the cosine function over the interval [0,𝜋∕2]
given 20 observations. The code is straightforward since NumPy has built-in functions polyfit
and polyval. From polyfit you get the minimizing regression parameters back, while you can
use them with polyval to generate values based on these parameters. The result is shown in
Figure A.4 for three different regression functions.

8Brandimarte (2006), sec. 3.3, introduces into these techniques.
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#

# Ordinary Least Squares Regression

# A_pyt/h_REG.py

#

import numpy as np

import matplotlib.pyplot as plt

# Regression

x = np.linspace(0.0, np.pi / 2, 20) # x values

y = np.cos(x) # y values, i.e. those values to regress

g1 = np.polyfit(x, y, 0) # OLS of degree 1

g2 = np.polyfit(x, y, 1) # OLS of degree 2

g3 = np.polyfit(x, y, 2) # OLS of degree 3

g1y = np.polyval(g1, x) # calculate regressed values for x vector

g2y = np.polyval(g2, x)

g3y = np.polyval(g3, x)

# Graphical Output

plt.figure() # initialize new figure

plt.plot(x, y, 'r', lw=3, label='cosine') # plot original function values

plt.plot(x, g1y, 'mx', label='constant') # plot regression function values

plt.plot(x, g2y, 'bo', label='linear')
plt.plot(x, g3y, 'g>', label='quadratic')
plt.legend(loc=0)
plt.grid(True)

F IGURE A.4 Approximation of cosine function (line) by constant
regression (crosses), linear regression (dots) and quadratic regression
(triangles)
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FIGURE A.5 Approximation of cosine function (line) by cubic
splines interpolation (red dots)

The concept of interpolation is much more involved but nevertheless almost as straightfor-
ward in applications. The most common type of interpolation is with cubic splines for which
you find functions in the sub-library scipy.interpolate. The example remains the same and the
code is as compact as before while the result—see Figure A.5—seems perfect.

#

# Cubic Spline Interpolation

# A_pyt/i_SPLINE.py

#

import numpy as np

import scipy.interpolate as sci

import matplotlib.pyplot as plt

# Interpolation

x = np.linspace(0.0, np.pi / 2, 20) # x values

y = np.cos(x) # function values to interpolate

gp = sci.splrep(x, y, k=3) # cubic spline interpolation

gy = sci.splev(x, gp, der=0) # calculate interpolated values

# Graphical Output

plt.figure()

plt.plot(x, y, 'b', label='cosine') # plot original function values

plt.plot(x, gy, 'ro', label='cubic splines')

# plot interpolated function values

plt.legend(loc=0)
plt.grid(True)
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Roughly speaking, cubic splines interpolation is (intelligent) regression between every
two observation points with a polynomial of order 3. This is of course much more flexible
than a single regression with a polynomial of, say, order 2. Two drawbacks in algorithmic
terms are, however, that the observations have to be ordered in the x-dimension. Furthermore,
cubic splines are of limited or no use for higher dimensional problems where OLS regression
is applicable as easily as in the two-dimensional world.

A.3.2 Opt imizat ion

Strictly speaking, regression and interpolation are two special forms of optimization (some
kind of minimization). However, optimization techniques are needed much more often in
derivatives analytics. An important area is, for example, the calibration of model parameters
to a given set of market-observed option prices or implied volatilities.

The two major approaches are global and local optimization. While the first looks for a
global minimum or maximum of a function (which does not have to exist at all), the second
looks for a local minimum or maximum. As an example, we take the sine function over
the interval [−𝜋, 0] with a minimum function value of −1 at −𝜋∕2. Again, the library scipy
delivers respective functions via the sub-library optimize. The code is as follows:

#

# Finding a Minimum of a Function

# A_pyt/j_OPT.py

#

import numpy as np

import scipy.optimize as sco

# Finding a Minimum

def y(x):

''' Function to Minimize. '''

if x < -np.pi or x > 0:

return 0.0

return np.sin(x)

gmin = sco.brute(y, ((-np.pi, 0, 0.01), ), finish=None) # global optimization

lmin = sco.fmin(y, -0.5) # local optimization

# Result Output

print "Global Minimum is %8.6f" % gmin

print "Local Minimum is %8.6f" % lmin

Both functions brute (global brute force algorithm) and fmin (local convex optimization
algorithm) also work in multi-dimensional settings. In general, the solution of the local opti-
mization is strongly dependent on the initialization; here the −0.5 did quite well in reaching
−𝜋/2 as the solution.
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1 In [5]: run j_OPT.py

2 Optimization terminated successfully.

3 Current function value: -1.000000

4 Iterations: 18

5 Function evaluations: 36

6 Global Minimum is -1.571593

7 Local Minimum is -1.570801

8

9 In [6]:

A.3.3 Numerical Integrat ion

It is not always possible to analytically integrate a given function. Then numerical integration
often comes into play. We want to check numerical integration where we can do it analytically
as well

∫

1

0
exdx

The value of the integral is e1 − e0 ≈ 1.7182818284590451. For numerical integration, again
scipy helps out with the sub-library integrate which contains the function quad, implementing
a numerical quadrature scheme:9

#

# Numerically Integrate a Function

# A_pyt/k_INT.py

#

import numpy as np

from scipy.integrate import quad

# Numerical Integration

def f(x):

''' Function to Integrate. '''

return np.exp(x)

int_value = quad(lambda u: f(u), 0, 1)[0]

# Output

print "Value of the integral is %10.9f" % int_value

9Brandimarte (2006), ch. 4, introduces into numerical integration.
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The output of the numerical integration equals the analytical value (with rounding):

1 In [8]: run k_INT.py

2 Value of the integral is 1.718281828

3

4 In [9]:

A.4 ADVANCED PYTHON TOPICS

This section briefly illustrates some advanced Python topics, in particular object-oriented
programming, basic input-output operations and reading data from Excel files.

A.4.1 Classes and Objects

So far, we have looked at modules and functions. The dominating coding paradigm of our time
is, however, object-oriented programming. For example, the popularity of C++ for derivatives
analytics stems to a great extent from the fact that it brings with it powerful object orientation.

On a rather basic level, almost anything is an object in Python. What we want to do now
is to implement new classes of objects, i.e. we go one level higher. For example, we can define
a new class for European call options. A class is characterized by its attributes which are
stored in a function with name __init__ and so-called methods, like the valuation function of
Black-Scholes-Merton as already implemented before. Here is a sample code for two classes:

#

# Two Financial Option Classes

# A_pyt/l_CLASS.py

#

#

import math

import scipy.stats as scs

# Class Definitions

class Option:

''' Black-Scholes-Merton European call option class.

Attributes

==========
S0: float

initial index level

K: float

strike price

T: float

time-to-maturity
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r: float

constant short rate

vola: float

constant volatility factor

'''

def __init__(self, S0, K, T, r, vola):

''' Initialization of Object. '''

self.S0 = float(S0)

self.K = K

self.T = T

self.r = r

self.vola = vola

def d1(self):

''' Helper function. '''

d1 = ((math.log(self.S0 / self.K) +

(self.r + 0.5 * self.vola ** 2) * self.T)

/ (self.vola * math.sqrt(self.T)))

return d1

def value(self):

''' Method to value option. '''

d1 = self.d1()

d2 = d1 - self.vola * math.sqrt(self.T)

call_value = (self.S0 * scs.norm.cdf(d1, 0.0, 1.0)

- self.K * math.exp(-self.r * self.T)

* scs.norm.cdf(d2, 0.0, 1.0))

return call_value

class OptionVega(Option):

''' Black-Scholes-Merton class for Vega of European call option. '''

def vega(self):

''' Method to calculate the Vega of the European call option. '''

d1 = self.d1()

vega = self.S0 * scs.norm.pdf(d1, 0.0, 1.0) * math.sqrt(self.T)

return vega

The working becomes clear after executing the module and defining option objects by
parametrizing the different classes:

1 In [12]: run l_CLASS.py

2

3 In [13]: o1 = Option(105., 100., 1.0, 0.05, 0.25)
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4

5 In [14]: o1.Value()

6 Out[14]: 15.654719726823579

7

8 In [15]: o1.Vega()

9 --------------------------------------------------------------------------

10 AttributeError Traceback (most recent call last)

11 ./python/A_pyt/<ipython-input-15-dbb35f94473d> in <module>()

12 ----> 1 o1.Vega()

13

14 AttributeError: Option instance has no attribute 'Vega'

15

16 In [16]: o2 = Option_Vega(105., 100., 1.0, 0.05, 0.25)

17

18 In [17]: o2.value()

19 Out[17]: 15.654719726823579

20

21 In [18]: o2.vega()

22 Out[18]: 36.588656569539303

23

24 In [19]:

The class Option contains a method called Value. The value of the option object o1 can be
retrieved via invoking the method as in o1.Value(). However, the class Option has no method to
calculate the vega10 of the option. This, however, is what is included in the class OptionVega.
This class is defined on the basis of the Option class via class OptionVega(Option) and inherits
the attributes and methods of the other class. That is why we parametrize an object of this
class in the same way and why we can calculate its value in the same way.

A.4.2 Basic Input-Output Operat ions

Saving and loading Python modules/scripts is really simple. However, the need to save and load
Python objects also arises frequently. In this section, we want to illustrate a fundamental way
of storing objects permanently (via pickling or serialization). The next sub-section illustrates
how to store data in and retrieve data from spreadsheet files. This is an important functionality
since Excel is still one of the most popular front-office tools in investment banks, hedge
funds, etc.

Suppose we want to save our two option objects o1 and o2 to a file on disk. To this
end, we can use the cPickle module. A respective session in IPython could look like the
following:

10The vega of an option is the first derivative of the option value V with respect to the volatility 𝜎, i.e.
𝜕V∕𝜕𝜎.
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1 In [19]: o1 = Option(105., 100., 1.0, 0.05, 0.25)

2

3 In [20]: o2 = OptionVega(105., 100., 1.0, 0.05, 0.25)

4

5 In [21]: import cPickle as cp

6

7 In [22]: option = open('option_container', 'w')

8

9 In [23]: cp.dump(o1, option)

10

11 In [24]: cp.dump(o2, option)

12

13 In [25]: option.close()

14

15 In [26]: option

16 Out[26]: <closed file 'option_container', mode 'w' at 0x1fcd270>

17

18 In [27]: options = open('option_container', 'r')

19

20 In [28]: option1 = cp.load(options)

21

22 In [29]: option2 = cp.load(options)

23

24 In [30]: option1.value()

25 Out[30]: 15.654719726823579

26

27 In [31]: option2.vega()

28 Out[31]: 73.345040765170197

29

30 In [32]: options.close()

31

32 In [33]:

Notice that the objects are loaded in the sequence as stored (“first in, first out”). And you
can never know (if you did not save the information as well) how many objects there are in
the file. So it could be a good idea to store the two option objects not separately but as a list.

1 In [33]: options = open('option_container_2', 'w')

2

3 In [34]: cp.dump([option1, option2], options)

4

5 In [35]: options.close()

6

7 In [36]: optionstore = open('option_container_2', 'r')

8
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9 In [37]: olist = cp.load(optionstore)

10

11 In [38]: olist

12 Out[38]:

13 (<__main__.Option instance at 0x251b710>,

14 <__main__.OptionVega instance at 0x251b6c8>)

15

16 In [39]: len(olist)

17 Out[39]: 2

18

19 In [40]: olist[0]

20 Out[41]: <__main__.Option instance at 0x251b710>

21

22 In [42]: olist[0].value()

23 Out[43]: 15.654719726823579

24

25 In [44]: olist[1].vega()

26 Out[45]: 73.345040765170197

27

28 In [46]:

This seems to make life a bit more convenient.

A.4.3 Interact ing with Spreadsheets

The topic of this sub-section is how to read and write data from and to Excel spreadsheets.
To this end, a sample Excel workbook is needed. We produced one with quite a few DAX
index quotes (source: http://finance.yahoo.com). The name of the file is DAX_data.xlsx and it
contains data as displayed in Figure A.6.

The data analysis library pandas provides a number of convenient I/O tools. Among them
is an Excel file reader which reads structured data contained in a spreadsheet into a pandas
DataFrame object.11 To access, print and plot the data contained in the Excel file, a script like
this does the job:

#

# Reading Data from Excel Spreadsheet Files

# A_pyt/m_Excel_read.py

#

import pandas as pd

import matplotlib.pyplot as plt

11At the time of writing pandas is already a mighty data analysis package (cf. McKinney (2012)). This
appendix can only give an initial impression of its capabilities. At the end of 2014, the PDF documentation
of the library stood at more than 1,500 pages (for release 0.15.1). The subsequent section demonstrates
how the library pandas can make life easier when it comes to handling financial time series and using
them for valuation purposes.

http://finance.yahoo.com
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# Open Excel Spreadsheet and Read Date

DAX = pd.read_excel('A_pyt/DAX_data.xlsx', 'sheet1',

index_col=0, parse_dates=True)

# Print 10 Most Current Daily Data Sets

print DAX.ix[-10:].to_string()

# Plot Close Levels for Whole Data Set

DAX['Close'].plot(label='DAX Index')

plt.legend(loc=0)

This module, once started, produces the following output:

1 In [10]: run m_Excel_read.py

2 Open High Low Close Volume Adj Close

3 Date

4 2014-11-17 9162.27 9331.32 9161.60 9306.35 72034400 9306.35

5 2014-11-18 9323.75 9461.53 9323.52 9456.53 73982400 9456.53

6 2014-11-19 9462.05 9521.73 9439.16 9472.80 73153500 9472.80

7 2014-11-20 9460.40 9487.69 9382.23 9483.97 82097800 9483.97

8 2014-11-21 9521.24 9736.14 9508.17 9732.55 166634400 9732.55

9 2014-11-24 9722.31 9832.41 9711.77 9785.54 97612300 9785.54

F IGURE A.6 Sample spreadsheet in Excel format with DAX quotes (here shown with LibreOffice);
source: finance.yahoo.com
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F IGURE A.7 Historic DAX index levels; source: http://finance.yahoo.com

10 2014-11-25 9790.03 9921.46 9787.26 9861.21 117773900 9861.21

11 2014-11-26 9894.60 9942.67 9868.35 9915.56 89124300 9915.56

12 2014-11-27 9934.78 9992.67 9920.86 9974.87 84700200 9974.87

13 2014-11-28 9990.70 9990.70 9902.40 9980.85 98906800 9980.85

14

15 In [11]:

The script also generates a plot as in Figure A.7.

A.5 RAPID F INANCIAL ENGINEERING

This section illustrates a whole valuation process implemented in Python and using again the
powerful library pandas as the main tool. It shows how to address the following tasks that are
typical for derivatives analytics in particular and financial engineering in general:

� data gathering (here: quotes for the German DAX index)
� data analysis (here: calculating daily log returns)
� generating graphics (here: plotting DAX quotes and log returns)
� implementing numerical methods (here: Monte Carlo simulation)
� data storage (here: DAX quotes with daily log returns)

http://finance.yahoo.com
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The script exhibits a rather concise form—which justifies the term rapid financial engi-
neering:

#

# Retrieving Financial Data from the Web and

# Doing Data Analytics with pandas

# A_pyt/n_pandas.py

#

import math

import numpy as np

import pandas as pd

import pandas.io.data as web

import matplotlib.pyplot as plt

#

# 1. Data Gathering

#

DAX = web.DataReader('ˆGDAXI', data_source='yahoo',
start='1/1/2005', end='28/11/2014')

# reads DAX data from Yahoo Finance

#

# 2. Data Analysis

#

DAX['Returns'] = np.log(DAX['Close'] / DAX['Close'].shift(1))

# daily log returns

#

# 3. Generating Plots

#

plt.figure(figsize=(7, 5))

plt.subplot(211)

DAX['Adj Close'].plot()

plt.title('DAX Index')

plt.subplot(212)

DAX['Returns'].plot()

plt.title('log returns')

plt.tight_layout()

#

# 4. Numerical Methods

#

# Market Parameters

S0 = DAX['Close'][-1] # start value of DAX for simulation

vol = np.std(DAX['Returns']) * math.sqrt(252)

# historical, annualized volatility of DAX

r = 0.01 # constant risk-free short rate
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# Option Parameters

K = 10000. # strike price of the option to value

T = 1.0 # time-to-maturity of the option

# Simulation Parameters

M = 50 # number of time steps

dt = T / M # length of time interval

I = 10000 # number of paths to simulate

np.random.seed(5000) # fixed seed value

# Simulation

S = np.zeros((M + 1, I), dtype=np.float) # array for simulated DAX levels

S[0] = S0 # initial values

for t in xrange(1, M + 1):

ran = np.random.standard_normal(I) # pseudo-random numbers

S[t] = S[t - 1] * np.exp((r - vol ** 2 / 2) * dt

+ vol * math.sqrt(dt) * ran)

# difference equation to simulate DAX levels step-by-step

# NumPy vectorization over all simulated paths

# Valuation

V0 = math.exp(-r * T) * np.sum(np.maximum(S[-1] - K, 0)) / I # MCS estimator

print "MCS call value estimate is %8.3f" % V0

#

# 5. Data Storage

#

h5file = pd.HDFStore('DAX_data.h5') # open HDF5 file as database

h5file['DAX'] = DAX # write pandas.DataFrame DAX into HDFStore

h5file.close() # close file

Here is some output from the script and from interacting with objects generated by it:

1 In [24]: run n_pandas.py

2 MCS call value estimate is 912.050

3

4 In [25]: DAX

5 Out[25]:

6 <class 'pandas.core.frame.DataFrame'>

7 DatetimeIndex: 2535 entries, 2005-01-03 00:00:00 to 2014-11-28 00:00:00

8 Data columns (total 7 columns):

9 Open 2535 non-null float64

10 High 2535 non-null float64

11 Low 2535 non-null float64

12 Close 2535 non-null float64

13 Volume 2535 non-null int64

14 Adj Close 2535 non-null float64
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15 Returns 2534 non-null float64

16 dtypes: float64(6), int64(1)

17 memory usage: 158.4 KB

18

19 In [26]: S0

20 Out[26]: 9980.8500000000004

21

22 In [27]: vol

23 Out[27]: 0.22005937913242066

24

25 In [28]: S

26 Out[28]:

27 array([[ 9980.85 , 9980.85 , 9980.85 , ...,

28 9980.85 , 9980.85 , 9980.85 ],

29 [ 10109.14261197, 10120.31053148, 9914.05151453, ...,

30 9623.88640669, 10528.55645662, 10060.46805893],

31 [ 9969.89401753, 9980.25807455, 9689.45433757, ...,

32 9459.14482363, 9892.4452775 , 10298.72443737],

33 ...,

34 [ 8634.23391906, 8220.4710566 , 7563.57734092, ...,

35 11602.42496642, 10136.19939927, 11625.19646252],

F IGURE A.8 DAX index quotes from 03. January 2005 to 28. November 2014 and daily log returns;
source: http://finance.yahoo.com

http://finance.yahoo.com
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36 [ 8721.89783607, 8067.9006704 , 7344.93794989, ...,

37 11615.52504255, 10339.54117202, 10668.75438809],

38 [ 8922.38372072, 8529.03134822, 7334.99586935, ...,

39 11576.12919096, 10343.39920151, 10297.9093708 ]])

40

41 In [29]:

As one can see, the pandas DataFrame object DAX has stored 2, 535 different sets of
daily quotes for the DAX index and 2, 534 daily log returns. The starting index level for the
simulation is 9, 980.85 while the annualized volatility is calculated as 22.0%. Via simulation,
the value for a European call option with strike K = 10, 000 and time-to-maturity of T = 1.0
years is estimated as 913.334. Figure A.8 shows the graphical output of the script.

This concludes this appendix on the Python programming language for financial analytics.
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