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1

A Quick Tour

1.1 MARKET-BASED VALUATION

This book is about the market-based valuation of (stock) index options. In the domain of
derivatives analytics this is an important task which every major investment bank and buy-side
decision maker in the financial market is concerned with on a daily basis. While theoretical
valuation approaches develop a model, parametrize it and then derive values for options, the
market-based approach works the other way round. Prices from liquidly traded options are
taken as given (i.e. they are inputs instead of outputs) and one tries to parametrize a market
model in a way that replicates the observed option prices as well as possible. This activity is
generally referred to as model calibration. Being equipped with a calibrated model, one then
proceeds with the task at hand, be it valuation, trading, investing, hedging or risk management.
A bit more specifically, one might be interested in pricing and hedging an exotic derivative
instrument with such a model—hoping that the results are in line with the overall market
(i.e. arbitrage-free and even “fair”’) due to the previous calibration to more simple, vanilla
instruments.
To accomplish a market-based valuation, four areas have to be covered:

1. market: knowledge about market realities is a conditio sine qua non for any sincere
attempt to develop market-consistent models and to accomplish market-based valuation

2. theory: every valuation must be grounded on a sound market model, ensuring, for exam-
ple, the absence of arbitrage opportunities and providing means to derive option values
from observed quantities

3. numerics: one cannot hope to work with analytical results only; numerical techniques,
like Monte Carlo simulation, are generally required in different steps of a market-based
valuation process

4. technology: to implement numerical techniques efficiently, one is dependent on appro-
priate technology (hard- and software)

This book covers all of these areas in an integrated manner. It uses equity index options
as the prime example for derivative instruments throughout. This, among others, allows to
abstract from dividend related issues.



2 DERIVATIVES ANALYTICS WITH PYTHON

1.2 STRUCTURE OF THE BOOK

The book is divided into three parts. The first part is concerned with market-based valuation
as a process and empirical findings about market realities. The second part covers a number
of topics for the theoretical valuation of options and derivatives. It also develops tools much
needed during a market-based valuation. The third part finally covers the major aspects related
to a market-based valuation and also hedging strategies in such a context.

Part I “The Market” comprises two chapters:

Chapter 2: this chapter contains a discussion of topics related to market-based valuation,
like risks affecting the value of equity index options

Chapter 3: this chapter documents empirical and anecdotal facts about stocks, stock
indices and in particular volatility (e.g. stochasticity, clustering, smiles) as well as about
interest rates

Part II “Theoretical Valuation” comprises four chapters:

Chapter 4: this chapter covers arbitrage pricing theory and risk-neutral valuation in
discrete time (in some detail) and continuous time (on a higher level) according to the
Harrison-Kreps-Pliska paradigm (cf. Harrison and Kreps (1979) and Harrison and Pliska
(1981))

Chapter 5: the topic of this chapter is the complete market models of Black-Scholes-
Merton (BSM, cf. Black and Scholes (1973), Merton (1973)) and Cox-Ross-Rubinstein
(CRR, cf. Cox et al. (1979)) that are generally considered benchmarks for option valuation
Chapter 6: Fourier-based approaches allow us to derive semi-analytical valuation formu-
las for European options in market models more complex and realistic than the BSM/CRR
models; this chapter introduces the two popular methods of Carr-Madan (cf. Carr and
Madan (1999)) and Lewis (cf. Lewis (2001))

Chapter 7: the valuation of American options is more involved than with European
options; this chapter analyzes the respective problem and introduces algorithms for Amer-
ican option valution via binomial trees and Monte Carlo simulation; at the center stands the
Least-Squares Monte Carlo algorithm of Longstaff-Schwartz (cf. Longstaff and Schwartz
(2001))

Finally, Part III “Market-Based Valuation” has seven chapters:

Chapter 8: before going into details, this chapter illustrates the whole process of a market-
based valuation effort in the simple, but nevertheless still useful, setting of Merton’s
jump-diffusion model (cf. Merton (1976))

Chapter 9: this chapter introduces the general market model used henceforth, which
is from Bakshi-Cao-Chen (cf. Bakshi et al. (1997)) and which accounts for stochastic
volatility, jumps and stochastic short rates

Chapter 10: Monte Carlo simulation is generally the method of choice for the valuation
of exotic/complex index options and derivatives; this chapter therefore discusses in some
detail the discretization and simulation of the stochastic volatility model by Heston
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(cf. Heston (1993)) with constant as well as stochastic short rates according to Cox-
Ingersoll-Ross (cf. Cox et al. (1985))

Chapter 11: model calibration stays at the center of market-based valuation; the chapter
considers several general aspects associated with this topic and then proceeds with the
numerical calibration of the general market model to real market data

Chapter 12: this chapter combines the results from the previous two to value European
and American index options via Monte Carlo simulation in the calibrated general market
model

Chapter 13: this chapter analyzes dynamic delta hedging strategies for American options
by Monte Carlo simulation in different settings, from a simple one to the calibrated market
model

Chapter 14: this brief chapter provides a concise summary of central aspects related to
the market-based valuation of index options

In addition, the book has an Appendix with one chapter:

Appendix A: the appendix introduces some of the most important Python concepts and
libraries in a nutshell; the selection of topics is clearly influenced by the requirements of
the rest of the book; those not familiar with Python or looking for details should consult
the more comprehensive treatment of all relevant topics by the same author (cf. Hilpisch
(2014))

1.3 WHY PYTHON?

Although Python has established itself in the financial industry as a powerful programming
language with an elaborate ecosystem of tools and libraries, it is still not often used for
financial, derivatives or risk analytics purposes. Languages like C++, C, C#, VBA or Java and
toolboxes like Matlab or domain-specific languages like R often dominate this area. However,
we see a number of good reasons to choose Python even for computationally demanding
analytics tasks; the following are the most important ones we want to mention, in no particular
order, (see also chapter 1 in Hilpisch (2014)):

open source: Python and the majority of available libraries are completely open source;
this allows an entry to this technology at no cost, something particularly important for
students, academics or other individuals

syntax: Python programming is easy to learn, the code is quite compact and in general
highly readable; at universities it is increasingly used as an introduction to programming
in general; when it comes to numerical or financial algorithm implementation, the syntax
is pretty close to the mathematics in general (e.g. due to code vectorization approaches)
multi-paradigm: Python is as good for procedural programming (which suffices for the
purposes of this book) as well as at object-oriented programming (which is necessary in
more complex/professional contexts); it also has some functional programming features
to offer

interpreted: Python is an interpreted language which makes rapid prototyping and devel-
opment in general a bit more convenient, especially for beginners; tools like [Python
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Notebook and libraries like pandas for time series analysis allow for efficient and produc-
tive interactive analytics workflows

libraries: nowadays, there is a wealth of powerful libraries available and the supply grows
steadily; there is hardly a problem that cannot be easily tackled with an existing library,
be it a numerical problem, a graphical one or a data-related problem

speed: a common prejudice with regard to interpreted languages—compared to compiled
ones like C++ or C—is the slow speed of code execution; however, financial applications
are more or less all about matrix and array manipulations and operations which can be
done at the speed of C code with the essential Python library NumPy for array-based
computing; other performance libraries, like Numba for dynamic code compiling, can
also be used to improve performance

market: in the London area (mainly financial services) the number of Python developer
contract offerings was 485 in the third quarter of 2012; the comparable figure in the same
period 2013 was already 864;! large financial institutions like Bank of America, Merrill
Lynch and J.P. Morgan have millions of lines of Python code in production, mainly in
risk management; Python is also really popular in the hedge fund industry

All in all, Python seems to be a good choice for our purposes. The cover story “Python
Takes a Bite” in the March 2010 issue of Wilmott magazine (cf. Lee (2010)) also illustrates
that Python is gaining ground in the financial world. A modern introduction into Python for
finance is given by Hilpisch (2014).

One of the easiest ways to get started with Python is to register on the Quant Platform
which allows for browser-based, interactive and collaborative financial analytics and devel-
opment (cf. http://quant-platform.com). This platform offers all you need to do efficient and
productive financial analytics as well as financial application building with Python. It also pro-
vides, for instance, integration with R, the free software environment for statistical computing
and graphics.

1.4 FURTHER READING

The book covers a great variety of aspects which comes at the cost of depth of exposition and
analysis in some places. Our aim is to emphasize the red line and to guide the reader easily
through the different topics. However, this inevitably leads to uncovered aspects, omitted
proofs and unanswered questions. Fortunately, a number of good sources in book form are
available which may be consulted on the different topics:

market: cf. Bittmann (2009) to learn about options fundamentals, the main microstructure
elements of their markets and the specific lingo; Gatheral (2006) is a concise reference
about option and volatility modeling in practice; Rebonato (2004) is a book that com-
prehensively covers option markets, their empirical specialities and the models used in
theory and practice

'Source: www.itjobswatch.co.uk/contracts/london/python.do on 07. October 2014.


http://quant-platform.com
http://quant-platform.com
www.itjobswatch.co.uk/contracts/london/python.do
www.itjobswatch.co.uk/contracts/london/python.do
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theory: Pliska (1997) is a comprehensive source for discrete market models; the book
by Delbaen and Schachermayer (2004) covers the general arbitrage theory in continuous
time and is quite advanced; less advanced, but still comprehensive, treatments of arbitrage
pricing are Bjork (2004) for continuous processes based on Brownian motion and Cont
and Tankov (2004a) for continuous processes with jumps; Wilmott et al. (1995) offers a
detailed discussion of the seminal Black-Scholes-Merton model

numerics: Cherubini et al. (2009) is a book-length treatment of the Fourier-based option
pricing approach; Glasserman (2004) is the standard textbook on Monte Carlo simulation
in financial applications; Brandimarte (2006) covers a wide range of numerical techniques
regularly applied in mathematical finance and offers implementation examples in Matlab?
implementation: probably the best introduction to Python for the purposes of this book
is another book by same author (cf. Hilpisch (2014)) which is called Python for Finance;
that book covers the main tools and libraries needed for this book, like IPython, NumPy,
matplotlib, PyTables and pandas, in a detailed fashion and with a wealth of concrete
financial examples; the excellent book by McKinney (2012) about data analysis with
Python should also be consulted; good general introductions to Python from a scientific
perspective are Haenel et al. (2013) and Langtangen (2009); Fletcher and Gardener
(2009) provides an introduction to the language also from a financial perspective, but
mainly from the angle of modeling, capturing and processing financial trades; London
(2005) is a larger book that covers a great variety of financial models and topics and shows
how to implement them in C++; in addition, there is a wealth of Python documentation
available for free on the Internet.

This concludes the Quick Tour.

ZPython in combination with NumPy comes quite close to the syntax of Matlab such that translations
are generally straightforward.
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What is Market-Based Valuation?

2.1 OPTIONS AND THEIR VALUE

An equity option represents the right to buy (call) or sell (puf) a unit of the underlying stock
at a prespecified price (strike) at a predetermined date (European option) or over a determined
period of time (American option). Some options are settled in actual stocks; most options, like
those on an index, are settled in cash. People or institutions selling options are called option
writers. Those buying options are called option holders.

For a European call option on an index with strike 8,000 and index level of 8,200
at maturity, the option holder receives the difference 8,200 — 8,000 = 200 (e.g. in EUR or
USD) from the option writer. If the index level is below the strike, say at 7,800, the option
expires worthless and the writer does not have to pay anything. We can formalize this via
the so-called inner value (or intrinsic value or payoff)—from the holder’s viewpoint—of
the option

hp(S, K) = max[S; — K, 0]

where T is the maturity date of the option, S; the index level at this date and K represents the
strike price. We can now use Python for the first time and plot this inner value function.
A script could look like:

European Call Option Inner Value Plot

02_MBV/inner value plot.py

(c) Dr. Yves J. Hilpisch

Derivatives Analytics with Python

H* F HF H HF H F

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

mpl.rcParams ['font.family'] = 'serif'
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# Option Strike
K = 8000

# Graphical Output
= np.linspace (7000, 9000, 100) # index level values

[= 5]

= np.maximum(S - K, 0) # inner values of call option

plt.figure()

plt.plot (S, h, 1lw=2.5) # plot inner values at maturity
plt.xlabel ('index level $S t$ at maturity')

plt.ylabel ('inner value of European call option')

plt.grid(True)

The output of this script is shown in Figure 2.1.
Three scenarios have to be distinguished with regard to the so-called moneyness of an
option:

in-the-money (ITM): a call (put) is in-the-money if § > K (S < K)
at-the-money (ATM): an option, call or put, is at-the-money if S ~ K
out-of-the-money (OTM): a call (put) is out-of-the-money if S < K (S > K)

However, what influences the present value of such a call option today? Here are some
factors:
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FIGURE 2.1 Inner value of a European call option on a stock index with strike
of 8,000 dependent on the index level at maturity
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initial index level: of course, it is important what the current index level is since this
influences how probable it is that the index level exceeds the strike at maturity; if the
index level is 7,900 it should be much more probable that the call option expires with
positive value than if the level was at 7,500

volatility of the index: put simply, (annualized) volatility is a measure for the randomness
of the index’s returns over a year; suppose the extreme case that the index is at 7,900
and there is no risk/no movement at all—then the index would not surpass the strike at
maturity; however, if the index is at 7,900 and fluctuating strongly then there is a chance
that the option will expire with positive value—and the bigger the fluctuations (the higher
the volatility) the better from the option holder’s viewpoint

time-to-maturity: again suppose the index is at 7,900; if time-to-maturity is only one
day then the probability of the option being valuable at maturity is much lower than if
time-to-maturity was 1 month or even 1 year

interest rate: cash flows from a European option occur at maturity only which represents
a future date; these cash flows have to be discounted to today to derive a present value

These heuristic insights are formalized in the seminal work of Black-Scholes-Merton (cf.
Black and Scholes (1973) and Merton (1973)) who for the first time derived a closed option
pricing formula for a parsimonious set of input parameters. Their formula says mainly the
following

Cp = CPM(Sy,K,T,r,0)

In words, the fair present value of a European call option Cg is given by their formula CBSM(.)
which takes as input parameters:

. Sy the current index level

. K the strike price of the option

T the maturity date (equals time-to-maturity viewed from the present date)

. r the constant risk-less short rate

. o the volatility of the index, i.e. the standard deviation of the index level returns

S RIS

The Black-Scholes-Merton formula can also be plotted and the result is shown in Fig-
ure 2.2.! The present value of the option is always above the (undiscounted) inner value. The
difference between the two is generally referred to as the time value of the option. In this sense,
the option’s present value is composed of the inner value plus the time value. Time value is
suggestive of the fact that the option still has time to get in-the-money or to get even more
in-the-money.

Here is the Python script that generates Figure 2.2.

ICf. Chapter 5 for a treatment of the Black-Scholes-Merton model and their pricing formula, reproduced
there as equation (5.7). The Python script in sub-section 5.6.2, which we have used to generate Figure
2.2, implements the formula for calls and puts.
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FIGURE 2.2 Black-Scholes-Merton value of a European call option on a
stock index with K = 9000, T = 1.0, r = 0.025 and o = 0.2 dependent on the
initial index level S; for comparison, the undiscounted inner value is also shown

European Call Option Value Plot
02_mbv/BSM value plot.py

(c) Dr. Yves J. Hilpisch

Derivatives Analytics with Python

H+ H OH H HF H H

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

mpl.rcParams ['font.family'] = 'serif’

# Import Valuation Function from Chapter 5
import sys
sys.path.append('05_com')

from BSM option valuation import BSM call value

Model and Option Parameters
8000 # strike price
= 1.0 # time-to-maturity

RoH R
]

= 0.025 # constant, risk-less short rate

vol = 0.2 # constant volatility

# Sample Data Generation

S = np.linspace (4000, 12000, 150) # vector of index level values
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= np.maximum(S - K, 0) # inner value of option
[BSM_call value (SO, K, 0, T, r, vol) for SO0 in S]

[el=2
I

# calculate call option values

# Graphical Output

plt.figure ()

plt.plot (S, h, 'b-.', 1lw=2.5, label='inner value')
# plot inner value at maturity

plt.plot (S, C, 'r', lw=2.5, label='present value')
# plot option present value

plt.grid(True)

plt.legend(loc=0)

plt.xlabel ('index level $S 0$')

plt.ylabel ('present value $C(t=0)$"')

2.2 VANILLA VS. EXOTIC INSTRUMENTS

Financial markets distinguish between plain vanilla or flow equity derivatives, like European
call options written on an equity index, and exotic equity derivatives, like options on an equity
index with Asian features, barriers and/or American exercise.” In general, there exist liquid
markets for plain vanilla products but not for exotic ones. In contrast, exotic derivatives are
often tailored by financial institutions to specific client needs and are not traded at all (or “only
once” if you like).3

Nevertheless, financial institutions writing exotic equity options (so-called sell side) or
clients buying these options (i.e. the buy side) must have a mechanism to derive fair values
regularly and transparently. In addition, option writers must be able to hedge their exposure. In
relation to exotic equity derivatives, sellers and buyers must often resort to numerical methods,
like Monte Carlo simulation, to come up with fair values and appropriate hedging strategies.

Here we face for the first time what is meant by market in market-based valuation.
The market is represented by liquidly traded vanilla instruments (for example, European or
American call options) on the underlying in question. If I want to value a non-traded equity
derivative in a market-based manner then I should include in this process the information
available from the relevant vanilla options market. This requirement is based on a belief in
efficient markets and the claim that the market is always right.

More formally, whatever model I use for the valuation and hedging of exotic equity
derivatives, a minimum requirement is that the model reproduce the values of liquidly traded
instruments sufficiently well. Two areas have to be considered carefully:

qualitative features: given the underlying of the derivative to be valued and the options
on this underlying liquidly traded, what qualitative features should the model exhibit? for

2Cf. de Weert (2008) for an overview and explanation of exotic options and their features.

3 As a proxy of market liquidity you can think of the frequency with which option quotes are updated. For
plain vanilla instruments this might be in the range of seconds during trading hours; for exotic derivatives
this might be once a day or even once a week.
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example, it would make sense to assume that an equity index will (positively) trend in the
long term; however, this assumption is not appropriate if the underlying is an interest rate
or volatility measure which tend to fluctuate around long-term equilibrium values
quantitative features: given the basic qualitative features of the model, there are in
general infinitely many possibilities to parametrize it; while in physics there are often
universal constants to rely on, this is hardly ever the case in finance; on the positive side,
this allows parameters to be set in a way that best fits model prices to market-observed
prices from vanilla instruments (a task called calibration and central in what follows)

In Chapter 3, we discuss a number of issues related to the question of what qualitative
features an appropriate model should exhibit. Part II of the book then explains how to build
such models theoretically. Part III of the book is mainly concerned with simulation, model
calibration (i.e. parameter specification), valuation and hedging.

2.3 RISKS AFFECTING EQUITY DERIVATIVES

This section focuses on market risks affecting the price of derivative instruments as well as
other risks that play a role in this context.

2.3.1 Market Risks

To come up with fair values for equity derivatives and sound hedging strategies, one has to
consider first which market risks influence their values. Among the market risks that influence
equity derivatives are:

price risk: this relates to uncertain changes in the underlying’s price, like index or stock
price movements

volatility risk: volatility refers to the standard deviation of the underlying’s returns;
however, volatility itself fluctuates over time, i.e. volatility is not constant but rather
stochastic

jump or crash risk: the stock market crashes of 1987, 1998, 2001 and 2008 as well as
implied volatilities of stock index options (see the next chapter) indicate that there is a
significantly positive probability for large market drops; such discontinuities may break
down, for example, otherwise sound dynamic hedging strategies

interest rate risk: although equity derivatives generally do not rely on interest rates
or bonds directly* their value is indirectly influenced by interest rates via risk-neutral
discounting with the short rate

correlation risk: simply spoken, correlation measures the co-movement of two or more
assets/quantities; correlation may change over time and become close to 1, i.e. perfect,
among asset classes during times of stress

liquidity risk: dynamic and static hedging strategies depend on market liquidity; for
example, if certain options are not liquidly traded a desired hedge may not be executable

4Otherwise they would be classified as hybrids.
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default risk: in case of the default of a company represented in the underlying assets,
stocks and/or bonds of this company depreciate in value (often to zero)

In what follows, the discussion addresses all market risks mentioned above, apart from
default and liquidity risk. Default risk does not play a significant role since the discussion
mainly focuses on benchmark indices where the possibility of default of a single company is
generally negligible.

Liquidity risk is more oriented towards the implementation of hedging programs and in that
sense “only” an important operational aspect depending on the specific market environment
an option seller or buyer operates in. In addition, the focus of this book is mainly on stock
index derivatives where liquidity risk seldom is a problem—index futures, for example, are
among the most liquid instruments. Although an active area of research,® a broadly accepted
theoretical approach to incorporate liquidity in financial models is still missing. Cetin et al.
(2004) point out:

“From a financial engineering perspective, the need is paramount for a simple yet
robust method that incorporates liquidity risk into arbitrage pricing theory.”

They propose what they call the “liquidity risk arbitrage pricing theory” with a stochastic
supply curve for a security’s price as a function of trade size.” As long as there is no solution
to this, one has to keep in mind what The New York Times summarizes as follows:

“That failure [of risk models] suggests new frontiers for financial engineering and
risk management, including trying to model the mechanics of panic and the patterns
of human behavior.

‘What wasn’t recognized was the importance of a different species of risk—
liquidity risk,” said Stephen Figlewski, a professor of finance at the Leonard N. Stern
School of Business at New York University....”8

2.3.2 Other Risks

In addition to market risks, there are other sources of risk like, for instance, models and
operations. Model risk refers to the risk that valuation and risk management finally rely on the
specific model used. Even if your model addresses, say, volatility risk you may nevertheless
address it in a harmful way—i.e. via the wrong model generating inappropriate hedging strate-
gies. Operational risk refers to all aspects of implementing valuation and risk management
processes as well as risks related to IT systems used. For example, knowledge of the right

SGatheral (2006), ch. 6, analyzes default risk in the context of options on single stocks. Duffie and
Singleton (2003) analyze default risk in a broader context and more comprehensively.

SFrey (2000) analyzes market illiquidity as a source of model risk in the context of dynamic hedging.
Hilpisch (2001) provides a survey of research addressing valuation and dynamic hedging in imperfectly
liquid markets.

7Cf. Jarrow (2005) for a discussion of this theory’s implications in terms of valuation, hedging and risk
measurement.

8The New York Times (13. September 2009): “Wall Street’s Math Wizards Forgot a Few Variables.”
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hedging program is surely of great importance—but the timely and correct execution of the
program is at least equally important.

2.4 HEDGING

Hedging describes the activity of minimizing or even eliminating risks resulting from option
positions. Getting back to our previous example, an option writer who faces the risk of paying
out 200 EUR to an option holder might want to set up a hedge program that pays her the exact
amount in the exact case—leaving her with net debt of zero. The program should also pay
300 EUR or 100 EUR or whatever might be the amount due to writing the index option. In
such a way, the writer would completely eliminate the risks attached to the short position in
the option. In general, option writers do exactly this since as market participants they are not
speculators but rather want to earn a steady income from their activities.

A hedge program can be either dynamic or static or a combination of both. Assume
the equity index option of the example has time-to-maturity of 1 year. In order to hedge the
option dynamically—in general with positions in the underlying—the writer sets up a hedge
portfolio at the date of writing the option and then adjusts the portfolio frequently. A static
hedge program—in general with positions in other options—would be set up at issuance
and hold constant until maturity. More sophisticated hedge strategies generally combine both
elements.

In general, there is neither a unique objective nor a unique set of principles for setting up
hedge programs. For example, Gilbert et al. (2007) report three main objectives of variable
annuities providers, i.e. life insurers, when implementing hedging programs:

1. accounting level
2. accounting volatility and
3. economic risks

This book focuses on economic risks only since accounting issues are highly dependent
on the concrete reporting standards and may therefore vary from country to country. In that
sense, the perspective of this book is cash flow driven and intentionally neglects accounting
issues. The approach is that of arbitrage or risk-neutral pricing/hedging as comprehensively
explained in Bjork (2004) for models with continuous price processes and in Cont and Tankov
(2004a) for models where price processes may jump.

Generally speaking, the main goal of a hedging program in economic or cash terms is
to perfectly replicate the hedged derivative’s payoff and thus eliminate all risk. However, in
practice this is seldom realized due to two main issues. The first is the frequency of hedge
rebalancings. In theory, dynamic hedging requires continuous rebalancings but practice only
allows discrete rebalancings due to transaction costs and other market microstructure elements.
This leads to a sequence of hedge errors which might add up over time or which may cancel
each other out to some extent. The second is market incompleteness. If jumps of the underlying
are possible, for example, markets become incomplete in the sense that risks cannot be hedged
away since an infinite number of hedge instruments would be necessary to do so. One must
rather resort to a risk minimization program where an (expected) hedge error, for example, is
minimized. Another possibility would be to super-replicate the derivative—a strategy that can
be rather costly.
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In summary, if markets are sufficiently complete, hedgers generally strive to completely
eliminate all cash flow risks resulting from options. If they are incomplete, hedgers can often
only try to minimize the (expected) hedge error.

2.5 MARKET-BASED VALUATION AS A PROCESS

This book mainly takes the perspective of a corporate or financial institution investing or
trading in—possibly exotic—equity derivatives. A canonical example might be a quantitative
hedge fund. In order to make profound decisions and to build a sustainable business around
equity derivatives, the institution must consider the following fundamental aspects:

1. market realities: what characterizes the market of the underlying and of the liquidly
traded options on the underlying?

2. market model: the institution should apply a theoretical market model which is capable
of providing a realistic framework for valuation and hedging purposes in the specific
underlying and option market

3. vanilla instrument valuation: there should be available efficient methods to price vanilla
instruments on a large scale

4. model calibration: a minimum requirement the market model must fulfill is that it
reproduce prices of actively traded vanilla instruments reasonably well; to this end, the
model parameters have to be calibrated to market data

5. exotic instrument valuation: there must be available flexible numerical methods to value
exotic derivatives based on the calibrated market model; the most flexible method in this
regard is Monte Carlo simulation (MCS)

6. hedging: as a general rule, if you can value a derivative instrument you can derive infor-
mation needed to hedge this instrument; regarding exotic equity derivatives, numerical
methods also have to be applied more often than not to come up with hedge parameters,
like the delta of an option

This book addresses all six aspects. However, it abstracts in general from market
microstructure aspects like bid/ask spreads, market liquidity, transaction costs, trade exe-
cution, etc. and also from dividends (which may be justified by the focus on index options).

Being equipped with an understanding of what characterizes the market-based valuation
process, the next chapter reproduces some of the most important stylized facts with regard to
stock indices and index options.






Market Stylized Facts

3.1 INTRODUCTION

In science one often takes the route from the specific to the general—from a number of
real world observations to a theory or model describing the phenomenon in general fashion.
This chapter therefore mainly conducts an analysis of real world data as a basis for the further
modeling and implementation efforts. Our main objects of analysis are the DAX stock index—
composed of stocks of large German companies—and European call options on the EURO
STOXX 50 stock index—composed of stocks of large European companies.

The chapter first introduces some notions central to equity markets and equity derivatives,
like volatility and correlation. It then conducts a simulation study in a laboratory fashion
based on the benchmark geometric Brownian motion model of Black-Scholes-Merton (BSM).
However, the main part of the chapter is concerned with the analysis of a financial time series
of daily DAX index level movements. This is done in a tutorial style where the simplicity and
replicability of results (with the provided Python scripts) are the main objectives. The chapter
then turns to equity options markets in section 3.5. Here, pricing conventions and practices,
the volatility smile/skew and its term structure are the main topics. Section 3.6 then rather
briefly takes a look at market realities with regard to short rates.

3.2 VOLATILITY, CORRELATION AND CO.

Volatility may be the most central notion in option and derivatives analytics. There is not a
single volatility concept but rather a family of concepts related to the notion of an “undirected
dispersion/risk measure”. For our purposes, we need to distinguish between the following
different—but somehow related—volatility concepts (always in relation to a stochastic process
or a financial time series):

historical volatility: this refers to the standard deviation of log returns of a financial time
series; suppose we observe N (past) log returns! ry.n € {1,..., N}, with mean return

! N
M=ﬁy;r”

! Assume a time series with quotes S,,n € {0,...,N}. The log return for n > 0 is defined by r, =
10g Sn - log Sn—l = log(Sn/Sn—l)'

19
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the historical volatility & is then given by>

(o}
I

N
1
= Yy = AP
N—l;

instantaneous volatility: this refers to the volatility factor of a diffusion process; for
example, in the Black-Scholes-Merton model the instantaneous volatility ¢ is found in
the respective (risk-neutral) stochastic differential equation (SDE)

dS, = rS,dt + 6S,dZ,

implied volatility: this is the volatility that, if put into the Black-Scholes-Merton option
pricing formula, gives the market-observed price of an option; suppose we observe today
a price of Cj for a European call option; the implied volatility o™P is the quantity that
solves ceteris paribus the implicit equation?

Cy = C™M(Sy,K, T, r,6"P)

These volatilities all have squared counterparts which are then named variance. For
example, in some financial models where volatility is stochastic—in contrast to the BSM
assumption—the variance is modeled instead of the volatility.

Two other (sample) moments of distribution are of importance:

skewness: this is a measure of the location of sample values relative to the mean (“more
to the left or more to the right”)*; again suppose we observe N (past) log returns r,n €
{1,..., N}, with mean return ji; the (sample) skewness § is

L3N - )
3/2
(3 i, - 22)

kurtosis: this is a measure for the peakedness of a distribution and/or the size of the tails
of the distribution (“fat tails” are implied by a high kurtosis); again suppose we observe
N (past) log returns r,,n € {1,...,N}, with mean return j; the (sample) kurtosis k is

s =

1 N ~
]T/ En:l(rﬂ - /’{)4

= -
(%200 - 2)

here 3 is subtracted such that the (standard) normal distribution has a kurtosis of 0

2This formula is often called the corrected (or unbiased) sample standard deviation in contrast to the
case of the uncorrected (or biased) sample standard deviation where the multiplier is 1/N instead of
1/(N —1). Note that in Python and in particular NumPy, the uncorrected sample standard deviation is
generally implemented.

3Implied volatility could in principle also be defined with respect to a different model. However, through-
out this book implied always means “implied by the Black-Scholes-Merton formula”.

“For the normal distribution the skewness is 0, implying a symmetric distribution around the mean.



Market Stylized Facts 21

Another important statistical notion is correlation. We mainly need to distinguish two
5.
types:

historical correlation: this refers to a measure for the co-movement of two financial
time series; suppose we observe from two series a and b a total of N (past) pairs of log
returns (r, rZ), n € {1,...,N}, with mean returns 4¢ and 4”; the historical (or sample)
correlation p is then defined as

oy (1= a) (= %)

p=
VI, (re - ) X, (0 - ab)?

instantaneous correlation: suppose we are given two standard Brownian motions Z%, Z’;
the instantaneous correlation p between both is then given by (Z¢, Zb), = pt where (-),
denotes the quadratic variation process (cf. Protter (2005), pp. 66—77); one can also write
dZ4d7ZP = pdt where the meaning of “instantaneous” becomes more evident

Equipped with this set of definitions we can now proceed and apply (some of) them to
both artificial data and real data.

3.3 NORMAL RETURNS AS THE BENCHMARK CASE

As the benchmark case, we consider the geometric Brownian motion model of BSM given by
the SDE

dsS, = rS,dt + 6S,dZ,

A discrete version, which can easily be simulated, is given by the difference equation

r— l0'2 ) At+oy/Atz,

S = Sr—Ate( ?

fortimes r € {At,2A¢, ..., T} and the z, being standard normally distributed random variables.

We parametrize the model with §; = 100, 7 = 10.0, r = 0.05, ¢ = 0.2. The Python script
in sub-section 3.8.1 contains these parameters and a simulation algorithm as well as imple-
menting a number of test routines. In addition, it generates a variety of graphical plots.®

Figure 3.1 presents a simulated path for the index level in combination with the daily log
returns. From first inspection, the index development seems realistic and indistinguishable from
typical charts seen in the financial press. Figure 3.2 shows the frequency of daily log returns
and compares these to a normal distribution. The fit seems quite good—a fact to be expected
since the characteristic feature of geometric Brownian motion is normally distributed returns.

Similary, Figure 3.3 illustrates the normality of the returns by a so-called quantile-quantile
plot or Q-Q plot. All return realizations lie on the straight line in such a case.

3Cf. Rebonato (2004) for an in-depth discussion of correlation in the context of option pricing.
5The script assumes 252 business days per year for the artificial data.
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FIGURE 3.1 A single simulated path for the geometric Brownian motion over a 10-year period with
daily log returns
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function of the normal distribution with the sample mean and volatility (line)
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FIGURE 3.3 Quantile-quantile plot of the daily log returns of the geometric
Brownian motion

However, statistical tests may help in gaining further confirmation of the graphical evi-
dence. To this end, the Python script calculates several sample statistics and conducts a total
of three tests. For the particular process shown in Figure 3.1, the statistics are:

RETURN SAMPLE STATISTICS

Mean of Daily Log Returns 0.000078
Std of Daily Log Returns 0.012746
Mean of Annua. Log Returns 0.019689
Std of Annua. Log Returns 0.202336
Skew of Sample Log Returns -0.024305
Skew Normal Test p-value 0.617420
Kurt of Sample Log Returns 0.127744
Kurt Normal Test p-value 0.190342
Normal Test p-value 0.374472
Realized Volatility 0.202340
Realized Variance 0.040941

Some comments on the results:

1. volatility: the annualized standard deviation of the log returns equals almost exactly the
instantaneous volatility ¢ = 0.2 of the geometric Brownian motion
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FIGURE 3.4 Realized volatility for the simulated path of the geometric Brownian motion

2. skewness: the skewness is almost zero and the high p-value of the normal skewness test
indicates that the distribution of the log returns is normal

3. kurtosis: although the kurtosis is slightly positive, the p-value of the normal kurtosis test
nevertheless also indicates normal distribution

4. normality: finally, the joint test for normality indicates a normal distribution with a
p-value of 0.426

Allin all, we can conclude that the simulated index level path exhibits, as desired, normally
distributed log returns. The sample annualized volatility also coincides with the instantaneous
volatility of the BSM model.

What about realized volatility and variance? To begin with, realized volatility is a special
form of historical volatility and can be seen as a process. While historical volatility is computed
for a fixed time window or a fixed number of observations, realized volatility evolves over
time. Assume we started in January 2004 with say five observations and compute the sample
volatility for the first time. Now, one day later when the 6th observation is available we update
the volatility value to include the 6th observation as well. In this fashion, realized volatility is
constantly updated.”

Figure 3.4 illustrates the evolution of realized volatility over time. It obviously converges
to the above reported value of 0.202 which is almost the same as the instantaneous volatility.

Finally, Figure 3.5 shows the rolling mean return and the rolling (realized) volatility for
time windows of 252 days, i.e. 1 year. In addition, the figure also displays the rolling correlation
between the two over a time window of same length. Even though the realized volatility and the
sample volatility for all returns coincide with the constant instantaneous volatility, the rolling

Cf. Andersen and Benzoni (2009) for a survey of realized volatility and related research.
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FIGURE 3.5 Rolling mean log return (252 days), rolling volatility (252 days) and rolling correlation
between both (252 days) for geometric Brownian motion; dashed lines are averages over the whole
period shown

volatility varies strongly around the level of 20%. The volatility and return measures are
sometimes positively correlated (move in the same direction) and sometimes negatively—on
average the correlation is p = —0.0529.

3.4 INDICES AND STOCKS

Before turning to options, this section reproduces stylized facts of stock indices and stocks.

3.4.1 Stylized Facts

In this sub-section, we briefly list and describe some stylized facts about stock index returns.
Stylized facts can be described as follows (cf. Cont (2001), p. 223):

“A set of [statistical] properties, common across many instruments, markets and time

5 99

periods, has been observed by independent studies and classified as ‘stylized facts’.

Below we list a selection of stylized facts. The emphasis is on comparing these facts
with the benchmark case of BSM where volatility is constant and returns are normally
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distributed. Among those stylized facts about index returns that are important for our

purposes are®:

stochastic volatility: volatility is neither constant nor deterministic; there is no mechanism
to forecast volatility at a high confidence level

volatility clustering: empirical data suggests that high volatility events seem to cluster
in time; there is often a positive autocorrelation of volatility measures

volatility mean reversion: volatility is a mean-reverting quantity—it never reaches zero
nor does it go to infinity; however, the mean can change over time

leverage effect: studies suggest that volatility is negatively correlated with asset returns;
if return measures increase, volatility measures often decrease and vice versa

fat tails: compared to a normal distribution large positive and negative index returns are
more frequent

jumps: index levels may move by magnitudes that cannot be explained within a Gaussian,
i.e. normal, diffusion setting; some jump component may be necessary to explain certain
large moves

3.4.2 DAX Index Returns

We will now test whether we can identify evidence for the stylized facts of the previous sub-
section in the log returns of the DAX index. We analyze the period from 01. October 2004 to
30. September 2014.° The following is a small selection of the raw data used. All results and
graphics reported hereafter are based on the adjusted close numbers from Yahoo! Finance.

index returns rea_var rea_vol
Date
2014-09-24 9661.97 0.006952 0.047792 0.218614
2014-09-25 9510.01 -0.015853 0.047798 0.218628
2014-09-26 9490.55 -0.002048 0.047780 0.218586
2014-09-29 9422.91 -0.007153 0.047766 0.218555
2014-09-30 9474.30 0.005439 0.047751 0.218519

Figure 3.6 shows the index levels and the daily log returns graphically. On first inspection,
the development of the index is not too different from the picture for the geometric Brownian
motion. However, the daily log returns speak quite a different language: the (average) ampli-
tudes change over time indicating at least time-varying volatility and there also seems to be
volatility clustering.

Figure 3.7 compares the sample frequency of log returns with a normal distribution that
has the same mean and standard deviation. The sample distribution has both a higher peak

8Cf. Cont (2001) for a concise survey. Cf. Rebonato (2004), in particular chapter 7, for a wealth of
information regarding empirical findings about equity markets and equity options.

°Source of DAX index quotes http:/finance.yahoo.com. We use the data as delivered by the site, no
adjustments have been made.
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FIGURE 3.6 DAX index level quotes and daily log returns over the period from 01. October 2004 to
30. September 2014

50

40 AP e

w
(=}

frequency/probability
N
(=)

10 : e T

- -
-0.10 —-0.05 0.00 0.05 0.10 0.15
log returns

FIGURE 8.7 Histogram of the daily log returns of the DAX over the period from 01. October 2004 to
30. September 2014 (bars) and for comparison the probability density function of the normal
distribution with the sample mean and volatility (line)
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FIGURE 3.8 Quantile-quantile plot of the daily log returns of the DAX over
the period from 01. October 2004 to 30. September 2014

and heavier tails. However, skewness seems comparable—there is neither “left-leaning” nor
“right-leaning” of the sample distribution.

Finally, Figure 3.8 shows the Q-Q plot for the DAX log returns. This also illustrates well
the deviation from the normal distribution.

We can also test our findings more rigorously, at least with respect to the obviously
non-normal distribution. Here is the output of the Python script of sub-section 3.8.2:

RETURN SAMPLE STATISTICS

Mean of Daily Log Returns 0.000348

Std of Daily Log Returns 0.013761
0.087656
0.218449

Mean of Annua. Log Returns
Std of Annua. Log Returns
Skew of Sample Log Returns 0.025083
Skew Normal Test p-value 0.603591

Kurt of Sample Log Returns 7.205877

Kurt Normal Test p-value 0.000000
Normal Test p-value 0.000000
Realized Volatility 0.218519
Realized Variance 0.047751
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FIGURE 3.9 Realized volatility for the DAX over the period from 01. October 2004 to 30.
September 2014

Over the sample period, the DAX index generates an annualized return of about 8.7%.
The historical/realized volatility is about 21.9%. All test results say that the null hypothesis
that “the sample distribution is normal” can be rejected with high significance. The impression
about the kurtosis is also supported by the high value of 7.2—we have fat tails.

What about realized volatility over time? Figure 3.9 illustrates that the realized volatility
varies over time and that it does not seem to converge (at least not strongly). In the beginning,
it goes down to below 15%, rises again to about 24% to drop and rise again for a bit. This
provides further evidence that volatility is time varying.

The last point is even better illustrated in Figure 3.10 which shows a rolling yearly
volatility measure. This measure varies between 11% and about 40%. These large deviations
are much stronger than the deviations observed in Figure 3.5 for the geometric Brownian
motion. This holds true for both deviations from the average and with respect to the difference
between maxima and minima. Nevertheless, volatility obviously is mean reverting.

What about the leverage effect? Comparison of the upper and middle sub-plots of Fig-
ure 3.10 indeed indicates a negative correlation. This is supported by the negative average
(line) in the lower sub-plot. However, the yearly rolling correlation measure in the lower
sub-plot varies strongly taking almost extreme values in regular cycles. Regularly, correlation
even comes quite close to +1.0 or —1.0.

So far, we have found evidence for time-varying/stochastic volatility, clustering, mean
reversion, leverage effect and fat tails. What about jumps? If we say, somehow arbitrarily, that
ajump is a daily log return of more than +5%, we have a total of 31 jumps in the historical DAX
data. Assuming a normal distribution with the DAX log returns’ sample mean and standard
deviation, the probabilities are P(r,, < —0.05) = 0.0002911 and P(r, > —0.05) = 0.0003402
for observing such extraordinary returns given a specific return observation r,. Multiplying
these probabilities with the sample size of 2,557 we could expect 0.74 returns lower than —5%
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and 0.87 returns higher than +5%. Again, we see evidence for fat tails and can interpret these
figures also as hints towards the existence of jumps.'?

All in all, if we want to model an index like the DAX realistically, the model should take
account of:

. autocorrelated stochastic volatility

. mean reversion of volatility

. leverage effect, i.e. negative correlation between returns and volatility
fat tails of and jumps in the index returns

AW N -

by

3.5 OPTION MARKETS

This section now turns to options markets, in particular to bid/ask spreads in these markets
and implied volatilities.

19These considerations are quite heuristic in nature and are lacking a sound conceptual grounding.
For example, a central question is how to assess the distinct contributions of the jump and diffusion
component, respectively, to observed index movements in a jump-diffusion model. Cf. Klossner (2010)
for a survey of econometric tests for jumps in financial time series.
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3.5.1 Bid/Ask Spreads

A market-based valuation of equity derivatives, both vanilla and exotic, should yield suffi-
ciently accurate values. However, markets are far from being perfect and a number of so-called
market microstructure elements influences prices directly or indirectly. With regard to valua-
tion accuracy it is important that there is in general not a single quote for an option but at least
two: a bid quote at which market makers would buy the option and an ask quote at which they
would sell the option.

Table 3.1 reports average option quote spreads for call options on stocks in the Dow
Jones Industrial Average (DJIA) index for the period from 1996 to 2010. For the total sample
of about 1.1 mn options, the average spread is 0.227 USD or 7.92% relative to the average
mid-price. These values vary with maturity of the call options and moneyness levels. The
smallest absolute spread with 0.136 USD is observed for out-of-the-money options with short
maturity. The smallest relative spread emerges with 3.7% for in-the-money options with long
maturity. Table 3.2 paints a consistent picture for put option quotes and spreads.

To put these observations differently, one cannot in general expect to reach a market-based
valuation accuracy of say “1 cent or better” or “1% or better”. The market itself does not quote
options in such a manner and exchanges generally have tick sizes—i.e. minimum allowed
changes of the price of an option—much higher than 1 cent. For example, in Tables 3.1 and
3.2 the tick size for options with bid quotes below 3 USD is 5 cents. For options with bid
quotes above 3 USD the tick size is 10 cents.

3.5.2 Implied Volatility Surface

Recall that the implied volatility of a European call option with market quote Cj is the value
o™™P that solves the implicit equation

Cy = CBM(Sy, K, T, r,0™) (3.1

given the BSM call option formula. Chapter 5 discusses the model, the formula and the
sensitivity of the formula with respect to the input volatility (the so-called vega) in detail. At

TABLE 3.1 Option bid/ask spreads for call options on stocks of the DJTA index®

Category Type Number Maturity Mid-Price Spread Rel. Spread

All All 1,095,327 96.60 5.185 0.227 7.92%
Short OTM 125,575 44.26 1.069 0.136 18.72%
Short ATM 118,027 44.74 2.956 0.184 7.44%
Short IT™ 173,607 44.30 6.561 0.265 4.74%
Long OTM 191,127 127.57 1.593 0.147 12.63%
Long ATM 203,790 129.63 4.563 0.226 5.72%
Long IT™ 283,201 128.81 9.967 0.318 3.70%

“Data for the period 1996-2010; OTM, ATM, ITM = out-of-the, at-the, in-the-money options; number =
number of call options included in the sample; maturity = average option maturity in days; mid-
price = middle of bid and ask quotes in USD; spread = USD difference of bid and ask quote; relative
spread = spread relative to mid-price.

Source: Chaudhury (2014).
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TABLE 3.2 Option bid/ask spreads for put options on stocks of the DJIA index®

Category Type Number Maturity Mid-Price Spread Rel. Spread

All All 1,105,028 96.07 5.093 0.229 7.80%
Short OT™M 158,486 44.55 1.339 0.148 15.98%
Short ATM 120,257 44.63 3.443 0.204 7.12%
Short I™ 146,979 43.86 6.858 0.279 4.91%
Long OT™M 267,847 128.80 2.238 0.172 10.26%
Long ATM 201,100 129.33 5.769 0.255 5.18%
Long I™ 210,359 127.34 10.621 0.317 3.50%

“Data for the period 1996-2010; OTM, ATM, ITM = out-of-the, at-the, in-the-money options; number =
number of put options included in the sample; maturity = average option maturity in days; mid-
price = middle of bid and ask quotes in USD; spread = USD difference of bid and ask quote; relative
spread = spread relative to mid-price.

Source: Chaudhury (2014).

this stage, it is only important to know, that the vega, i.e. the first derivative of the formula with
respect to volatility, is strictly positive implying a bijective relationship between call values
and volatilities and therewith a unique solution to equation (3.1). Sub-section 3.8.3 provides
a Python script implementing the BSM formula for calls and a numerical routine to solve the
implicit equation (3.1).

Equipped with this knowledge, we now want to briefly analyze a real volatility surface.
Volatility surface means the volatilities implied for different option strikes and different option
maturities on the same underlying. Our objects of study will be implied volatilities from
European call options on the EURO STOXX 50 stock index.

As with index returns, there are some stylized facts about the volatility surface for stock
indices (cf. Rebonato (2004), chapter 7):

smiles: option implied volatilities exhibit a smile form, i.e. for calls the OTM implied
volatilities are higher than the ATM ones; sometimes they rise again for ITM options; this
is a phenomenon present in the financial markets mainly since the market crash of 1987
term structure: smiles are more pronounced for short-term options than for longer-term
options; a phenomenon sometimes called volatility term structure

The script in sub-section 3.8.4 uses a set of option quotes for different strikes and different
option maturities. Options are European call options on the EURO STOXX 50 index and the
quotes are from 30. September 2014. The following is a small excerpt from the data used.

Date Strike Call Maturity Put
498 2014-09-30 3750 27.4 2015-09-18 635.9
499 2014-09-30 3800 21.8 2015-09-18 680.3
500 2014-09-30 3850 17.2 2015-09-18 725.7
501 2014-09-30 3900 13.4 2015-09-18 772.0
502 2014-09-30 3950 10.4 2015-09-18 818.9

The script calculates the implied volatilities of the different options and generates a
graphical output as shown in Figure 3.11. The results reflect the stylized facts rather well.
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FIGURE 3.11 Implied volatilities from European call options on the EURO STOXX 50 on 30.
September 2014

3.6 SHORT RATES

Short rates and associated discount factors are not only important for the valuation of options.
Short rates are, in a sense, the least common denominator of all asset pricing models—be it for
primary asset classes (e.g. stocks, bonds, commodities) or derivative assets, be it in complete
or incomplete market models (cf. Hansen and Renault (2009)). As intensively discussed in
Chapter 4, short rates and their corresponding discount factors are a basic building block for
the risk-neutral valuation approach and the Fundamental Theorem of Asset Pricing.

However, empirical evidence about the dynamics of short rates is not as clear as one would
wish. A recent empirical study by Bali-Wu opens with the words (cf. Bali and Wu (2006),
pp- 1269-1270):

“The short-term interest rate is a fundamental variable in both theoretical and empir-
ical finance because of its central role in asset pricing. An enormous amount of work
has been directed towards the understanding of the stochastic behavior of short-term
interest rates. Nevertheless, based on different data sets and/or different parametric or
non-parametric specifications, these studies have generated confusing and sometimes
conflicting conclusions.”

Nevertheless, some stylized facts are also worth reporting with respect to short rates.!!
Those that are most important in terms of financial modeling requirements are:

positivity: (nominal) interest rates are positive in general; a formal model should take
this into account

'Cf. Bjork (2009) for a concise survey of interest rate types and modeling. Cf. Brigo and Mercurio
(2006) for a comprehensive treatment of current interest rate modeling.
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FIGURE 3.12 Daily quotes of 1 week Euribor and daily log changes over the period from 01.
January 1999 to 30. September 2014

stochasticity: interest rates in general and short rates in particular move in random fashion;
there are no means to forecast interest rates movements with high confidence

mean reversion: interest rates can neither trend to zero nor infinity in the long term such
that there must always be the phenomenon of mean reversion

term structure: yields of benchmark bonds—Ilike German bunds—as well as rates in
interbank lending vary with time to maturity implying different (instantaneous) forward
rates, i.e. different future short rate levels

The Euribor, which stands for “Euro InterBank Offered Rate”, is a benchmark rate for
interbank lending. There are Euribor rates for different maturities, starting with 1 week and
ranging to 1 year. Figure 3.12 shows the daily quotes of the 1 week Euribor from January 1999
to the end of September 2014 as well as the daily log changes. With regard to the daily changes
there are a number of outliers and we can also observe something like volatility clustering.
The figure also provides support for the first three stylized facts. This figure has been produced
with the Python script found in sub-section 3.8.5. This script uses an Excel workbook which
contains the whole Euribor dataset from 1999 to September 2014.!? Figure 3.13 shows the
histogram of the daily log changes in comparison to a normal distribution with same mean
and standard deviation. The histogram has a relatively high peak.

Figure 3.14 illustrates the deviation of the daily log change distribution from normality
by a Q-Q plot.

Figure 3.15 shows the daily quotes of the Euribor for 1 week, 1 month, 6 months and 1 year
in comparison. The general picture is one with a normal term structure (longer horizons show

12Source: http://www.euribor-ebf.eu/euribor-org/euribor-rates.html.
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FIGURE 3.13 Histogram of daily log changes in 1 week Euribor in comparison to a normal
distribution with same mean and standard deviation (line)
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FIGURE 3.15 Daily quotes of 1 week (dotted), 1 month (dot-dashed), 6 months (dashed) and 1 year
Euribor (solid line) over the period from 01. January 1999 to 30. September 2014

higher rates) but there are also periods with inverted term structure where short-term borrowing
becomes more expensive than long-term borrowing. The financial crisis of 2008/2009 caused
a large drop in the overall level of Euribor rates accompanied by a widening of the spreads
(steeper term structure).

3.7 CONCLUSIONS

A realistic market model ...

= ... has to take into account that index volatility

— varies over time (stochasticity, mean reversion, clustering)

— is negatively correlated with returns (leverage effect)

— varies for different option strikes (volatility smile)

— varies for different option maturities (volatility term structure)
.. has to account for jumps in the index development
.. has to take into account that interest rates

— vary over time (positivity, stochasticity, mean reversion)

— vary for different time horizons (term structure)

Such a model therefore comprises (at least)

= a stochastic volatility component
® ajump component and
= a stochastic short rate component
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3.8 PYTHON SCRIPTS

3.8.1 GBM Analysis

Analyzing Returns from Geometric Brownian Motion
03_stf/GBM_returns.py

(c) Dr. Yves J. Hilpisch

Derivatives Analytics with Python

H OH O H OH OH O H H

import math

import numpy as np

import pandas as pd

import scipy.stats as scs
import statsmodels.api as sm
import matplotlib as mpl

import matplotlib.pyplot as plt

mpl.rcParams ['font.family'] = 'serif'
#

# Helper Function

#

def dN(x, mu, sigma):

""" Probability density function of a normal random variable x.

Parameters

mu: float
expected value
sigma: float

standard deviation

pdf: float
value of probability density function
z = (x - mu) / sigma
pdf = np.exp(-0.5 * z ** 2) / math.sgrt(2 * math.pi * sigma ** 2)
return pdf

#
# Simulate a Number of Years of Daily Stock Quotes
#
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def simulate gbm() :
# model parameters
S0 = 100.0 # initial index level
T = 10.0 # time horizon
r = 0.05 # risk-less short rate

vol = 0.2 # instantaneous volatility

# simulation parameters

np.random.seed (250000)

gbm_dates = pd.DatetimeIndex (start='30-09-2004",
end='30-09-2014",
freg='B')

M = len(gbm dates) # time steps

I = 1 # index level paths

dt = 1 / 252. # fixed for simplicity

df = math.exp(-r * dt) # discount factor

# stock price paths

rand = np.random.standard normal ((M, I)) # random numbers
S = np.zeros_like(rand) # stock matrix
S[0] = S0 # initial values
for t in range(l, M): # stock price paths
S[t]l] = S[t - 1] * np.exp((r - vol ** 2 / 2) * dt

+ vol * rand[t] * math.sgrt(dt))

gbm = pd.DataFrame(S[:, 0], index=gbm dates, columns=['index'])

gbm['returns'] = np.log(gbm['index'] / gbm['index'].shift (1))

# Realized Volatility (eg. as defined for variance swaps)

gbm['rea var'] = 252 * np.cumsum(gbm['returns'] ** 2) / np.arange(len(gbm))
gbm['rea vol'] = np.sqgrt(gbm['rea var'l]

gbm = gbm.dropna ()

return gbm

# Return Sample Statistics and Normality Tests

def print_statistics(data):
print "RETURN SAMPLE STATISTICS"
print "---------m - !
print "Mean of Daily Log Returns %9.6f" % np.mean(datal'returns'])

print "Std of Daily Log Returns %$9.6f" % np.std(datal['returns'])

print "Mean of Annua. Log Returns %9.6f" % (np.mean(data['returns']) * 252)
print "Std of Annua. Log Returns %9.6f" % \

(np.std(datal['returns']) * math.sqrt(252))
Print Moo oo oo e oo !
print "Skew of Sample Log Returns %9.6f" % scs.skew(datal'returns'])
print "Skew Normal Test p-value %9.6f" % scs.skewtest (datal['returns']) [1]

Print Mo m e '
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print "Kurt of Sample Log Returns %9.6f" % scs.kurtosis(data['returns'])
print "Kurt Normal Test p-value %$9.6f" % \
scs.kurtosistest (data['returns']) [1]
Print M--m o m oo oo e !
print "Normal Test p-value %9.6f" % \
scs.normaltest (data['returns']) [1]
Print Mmoo oo oo !
print "Realized Volatility $9.6f" % datal'rea_vol'].iloc[-1]
print "Realized Variance $9.6f" % datal'rea var'].iloc[-1]

#

# Graphical Output

#

# daily quotes and log returns

def quotes_returns (data) :

''"'" Plots quotes and returns. '''

plt.figure (figsize=(9, 6))
plt.subplot (211)
data['index'] .plot ()

plt.ylabel('daily quotes')

plt.grid(True)

plt.axis('tight')

plt.subplot (212)
data['returns'] .plot ()

plt.ylabel('daily log returns')

plt.grid(True)

plt.axis('tight')

# histogram of annualized daily log returns

def return histogram(data) :

""" Plots a histogram of the returns. '''

plt.figure (figsize=(9, 5))

X = np.linspace (min(data['returns']), max(data['returns']), 100)
plt.hist (np.array(data['returns']), bins=50, normed=True)
y = dN(x, np.mean(data['returns']), np.std(datal['returns']))

plt.plot(x, y, linewidth=2)

plt.xlabel ('log returns')

plt.ylabel (' frequency/probability')

plt.grid(True)

# Q-0 plot of annualized daily log returns

def return_ggplot (data) :

''!' Generates a Q-Q plot of the returns.'''

plt.figure (figsize=(9, 5))

sm.ggplot (data['returns'], line='s')

plt.grid(True)

plt.xlabel ('theoretical quantiles')

plt.ylabel ('sample quantiles!')
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# realized volatility

def realized volatility(data):
"' Plots the realized volatility. '"'
plt.figure (figsize=(9, 5)
data['rea vol'].plot ()
plt.ylabel ('realized volatility')
plt.grid(True)

# mean return, volatility and correlation (252 days moving = 1 year)
def rolling statistics(data):
""" Calculates and plots rolling statistics (mean, std, correlation). ''!

plt.figure (figsize= (11, 8)

plt.subplot (311)

mr = pd.rolling mean(datal['returns'], 252) * 252
mr.plot ()

plt.grid(True)

plt.ylabel ('returns (252d)"'")

plt.axhline (mr.mean(), color='r', ls='dashed',K 1lw=1.5)

plt.subplot (312)

vo = pd.rolling_ std(datal'returns'], 252) * math.sqgrt(252)
vo.plot ()

plt.grid(True)

plt.ylabel ('volatility (252d) ")

plt.axhline (vo.mean(), color='r', ls='dashed',K 1lw=1.5)

vx = plt.axis()

plt.subplot (313)

co = pd.rolling corr(mr, vo, 252)
co.plot ()

plt.grid(True)

plt.ylabel ('correlation (252d)"')

cx = plt.axis()
plt.axis([vx[0], vxI[1], cx[2], cx[3]11)
plt.axhline(co.mean(), color='r', ls='dashed',K 1lw=1.5)

3.8.2 DAX Analysis

Analyzing DAX Index Quotes and Returns
Source: http://finance.yahoo.com
03_stf/DAX_ returns.py

(c) Dr. Yves J. Hilpisch

Derivatives Analytics with Python

H o H H H O H H =


http://finance.yahoo.com
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import pandas.io.data as web

from GBM_returns import *

# Read Data for DAX from the Web
def read dax data():
'''" Reads historical DAX data from Yahoo! Finance, calculates log returns,
realized variance and volatility.'"'
DAX = web.DataReader (' "GDAXI', data_source='yahoo',
start='30-09-2004"', end='30-09-2014")

DAX.rename(columns={'Adj Close' : 'index‘}, inplace=True)

DAX['returns'] = np.log(DAX['index'] / DAX['index'].shift (1)

DAX['rea_var'] = 252 * np.cumsum(DAX['returns'] ** 2) / np.arange (len(DAX))
DAX['rea vol']l = np.sqrt (DAX['rea var'])

DAX = DAX.dropna ()
return DAX

def count_jumps (data, value):
""" Counts the number of return jumps as defined in size by value. '"'

jumps = np.sum(np.abs(datal['returns']) > value)

return jumps

3.8.3 BSM Implied Volatilities

Valuation of European Call Options in BSM Model
and Numerical Derivation of Implied Volatility
03_stf/BSM_imp vol.py

(c) Dr. Yves J. Hilpisch
from Hilpisch, Yves (2014): Python for Finance, O'Reilly.

H*+ HF H H F H H HF

from math import log, sgrt, exp
from scipy import stats
from scipy.optimize import fsolve

class call option(object) :

"' Class for European call options in BSM Model.

Attributes
S0: float

initial stock/index level
K: float

strike price
t: datetime/Timestamp object

pricing date
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M: datetime/Timestamp object
maturity date
r: float
constant risk-free short rate
sigma: float

volatility factor in diffusion term

value: float

return present value of call option
vega: float

return vega of call option
imp_vol: float

return implied volatility given option quote

def _ init_ (self, SO, K, t, M, r, sigma):
self.sS0 = float (S0)
self . K = K

self.t = t
self.M = M
self.r = r
self.sigma = sigma

def update ttm(self) :
''' Updates time-to-maturity self.T. '"!
if self.t > self.M:
raise ValueError ("Pricing date later than maturity.")
self.T = (self.M - self.t).days / 365.

def dil(self):
"' Helper function. '''
dl = ((log(self.s0 / self.K)
+ (self.r + 0.5 * self.sigma ** 2) * self.T)
/ (self.sigma * sqrt(self.T)))

return dl

def value(self):
""" Return option value. ''!'
self.update ttm()
dl = self.di()
d2 = ((log(self.s0 / self.K)

+ (self.r - 0.5 * gself.sigma ** 2) * gelf.T)
/ (self.sigma * sqrt(self.T)))
value = (self.S0 * stats.norm.cdf(dl, 0.0, 1.0)

- self.K * exp(-self.r * self.T) * stats.norm.cdf (d2,

return value

0.

0,

1.

0))
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def vega(self):
""" Return Vega of option. '''
self.update_ttm()
dl = self.dil()
vega = self.S0 * stats.norm.pdf(dl, 0.0, 1.0) * sgrt(self.T)

return vega

def imp vol(self, CO, sigma est=0.2):
""" Return implied volatility given option price. ''!
option = call_option(self.S0, self.K, self.t, self.M,
self.r, sigma_est)
option.update ttm()

def difference(sigma) :

option.sigma = sigma
return option.value() - CO
iv = fsolve(difference, sigma_est) [0]

return iv

3.8.4 EURO STOXX 50 Implied Volatilities

Black-Scholes-Merton Implied Volatilities of
Call Options on the EURO STOXX 50

Option Quotes from 30. September 2014
Source: www.eurexchange.com, www.stoxx.com
03_stf/ES50_imp vol.py

(c) Dr. Yves J. Hilpisch

Derivatives Analytics with Python

H*+ F H FH OHF H HF H H HF

import numpy as np

import pandas as pd

from BSM_imp_vol import call_ option
import matplotlib as mpl

import matplotlib.pyplot as plt

mpl.rcParams ['font.family'] = 'serif'

# Pricing Data
pdate = pd.Timestamp('30-09-2014")

#
# EURO STOXX 50 index data
#

# URL of data file

es_url = 'http://www.stoxx.com/download/historical values/hbrbcpe.txt'

# column names to be used


http://www.eurexchange.com
http://www.stoxx.com
http://www.stoxx.com/download/historical_values/hbrbcpe.txt
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cols = ['Date', 'SX5P', 'SX5E', 'SXXP', 'SXXE',
'SXXF', 'SXXA', 'DK5F', 'DKXF', 'DEL']

# reading the data with pandas

es = pd.read csv(es_url, # filename
header=None, # ignore column names
index col=0, # index column (dates)
parse_dates=True, # parse these dates
dayfirst=True, # format of dates
skiprows=4, # ignore these rows
sep="';"', # data separator
names=cols) # use these column names

# deleting the helper column

del es['DEL']

S0 = es['SX5E'] ['30-09-2014"]

r = -0.05

#

# Option Data

#

data = pd.HDFStore('./03 _stf/es50 option data.h5', 'r')['data'l
#

# BSM Implied Volatilities

#

def calculate imp vols(data) :
""" Calculate all implied volatilities for the European call options
given the tolerance level for moneyness of the option.''!
data['Imp Vol'] = 0.0
tol = 0.30 # tolerance for moneyness
for row in data.index:
t = datal'Date'] [row]

T = datal['Maturity'] [row]

ttm = (T - t).days / 365.
forward = np.exp(r * ttm) * SO
if (abs(datal['Strike'] [row] - forward) / forward) < tol:

call = call option(S0, datal'Strike'] [row], t, T, r, 0.2)
data['Imp Vol'] [row] = call.imp vol (data['Call'] [row])

return data

#

# Graphical Output

#

markers = ['.', 'o', '"', 'v', 'x', 'D', 'd', 's>', '<']

def plot_imp_vols (data) :
""" Plot the implied volatilites. ''!'
maturities = sorted(set(datal['Maturity']l))

plt.figure(figsize=(10, 5))
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for i, mat in enumerate (maturities) :
dat = datal(data['Maturity'l == mat) & (data['Imp_Vol'l > 0)]
plt.plot (dat['Strike'].values, dat['Imp Vol'].values,
'b%s' % markers[i], label=str(mat) [:10])
plt.grid()
plt.legend()
plt.xlabel ('strike')
plt.ylabel ('implied volatility"')

3.8.95 Euribor Analysis

Analyzing Euribor Interest Rate Data
Source: http://www.emmi-benchmarks.eu/euribor-org/euribor-rates.html
03 _stf/EURIBOR_analysis.py

(c) Dr. Yves J. Hilpisch

Derivatives Analytics with Python

H OHF H O H H O H H OH

import pandas as pd

from GBM_returns import *

# Read Data for Euribor from Excel file
def read euribor dataf():
""" Reads historical Euribor data from Excel file, calculates log returns,
realized variance and volatility.'"'
EBO = pd.read_excel('./03_stf/EURIBOR current.xlsx',
index_col=0, parse_dates=True)
EBO['returns'] = np.log(EBO['lw'] / EBO['lw'].shift (1))
EBO = EBO.dropna ()
return EBO

# Plot the Term Structure
markers = [',', '-.', '=', '-1]
def plot_term structure(data):
'''" Plot the term structure of Euribor rates. ''"'
plt.figure (figsize=(10, 5))
for i, mat in enumerate(['lw', 'lm', 'é6m', '12m']):
plt.plot (data[mat] .index, data[mat].values,
'b%s' % markers[i], label=mat)
plt.grid()
plt.legend()
plt.xlabel ('strike')
plt.ylabel ('implied volatility')
plt.ylim (0.0, plt.ylim() [1])
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Risk-Neutral Valuation

4.1 INTRODUCTION

Every sincere attempt to value financial derivatives needs to be grounded on a sound theory,
formally represented in general by some kind of market model. A market model embodies
a simplifying mathematical description of a real financial market. A priori, it is not clear
what features a market model should have. These are mainly dictated by the market under
observation and the tasks to be accomplished (e.g. pricing, trading, hedging, risk management).
However, there is a minimum set of requirements a market model should obey. The most
important are the absence of arbitrage opportunities (NA) and no free lunches with vanishing
risk (NFLVR).

A central result in mathematical finance is the Fundamental Theorem of Asset Pricing
which relates, for a given market model, the conditions of NA or NFLVR to the existence of
an equivalent martingale measure (EMM) making all discounted stochastic processes of the
market model martingales. A martingale is a stochastic process that does not change its value
on average (under some suitable conditions). An important corollary of this result is that the
(discounted) price processes of attainable, i.e. redundant, options are also martingales giving
rise to a pure probabilistic approach to option pricing. Namely, the value of a European option
maturing at some date in the future is simply its expected payoff at that date under the EMM
discounted back to today by the risk-free short rate.

The market-based valuation of options is a mainly numerical discipline and therefore
works generally in discrete time and with discrete state spaces. This is due to computers being
able only to store discrete sets of quantities. However, in the valuation process analytical
results from continuous time, continuous state space models are used whenever appropriate.
Unfortunately, the mathematical machinery needed to establish the Fundamental Theorem for
such types of models is well beyond the scope of this book.

We therefore take a typical—and for our purposes appropriate—route by introducing
the main building blocks of the theory in discrete time and with discrete state space. The
mathematics needed remains on an undergraduate level. Nevertheless, all the fundamental
notions and results of arbitrage pricing and risk-neutral valuation can be presented in an
almost self-contained fashion. The intuitive grasp gained in this discrete model world should
then carry over to the continuous world with its numerous complications. In this setting, the
central results are only stated and references are given for the respective proofs.

49
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There is a large literature on the concepts and results presented in this chapter. Cf. Bhat-
tacharya and Waymire (2007) or Williams (1991) for the fundamental probabilistic concepts.
Cf. Protter (2005) for a comprehensive treatment of stochastic processes and stochastic inte-
gration needed for the continuous time, continuous state space context. The seminal paper
by Harrison and Pliska (1981) is still a highly readable source, in particular for the discrete
case. The book by Pliska (1997) coveres comprehensively arbitrage theory in discrete models
while the book by Delbaen and Schachermayer (2004) should be consulted on the general
theory. The article by Protter (2001) provides a concise survey of the general theory.

Sections 4.2 through 4.4 cover the discrete time case. Section 4.5 considers continuous
time models. A number of proofs are provided in section 4.7.

4.2 DISCRETE-TIME UNCERTAINTY

In this section, we develop a mathematical model that can capture the notions of risk
and uncertainty in financial markets.! We consider an economy over a fixed time interval
[0,T] c R,. T is called the terminal date where we assume T" € N, the set of natural numbers.
At date O there is uncertainty about the true state of the economy at the terminal date 7. The
set of possible states, however, is known. The set of all possible states @ is denoted Q and
called the state space. Subsets of Q are called events. The family of sets that forms the set of
observable events is an algebra in Q.

Definition 1 (Algebra). A family F of sets is an algebra in Q if:

1. QeF
2E€F=>E€eF
3. E,E,....E;eF=>U_ EeF

[E€ denotes the complement of the set IE. It is easy to see that the power set g2(Q) of Q, i.e.
the set of all subsets of €, is the largest algebra in Q and that the family {@, Q} is the smallest
one. On the set of observable events F, we can define a probability measure. The probability
measure carries information about the probability of observable events to occur.

Definition 2 (Probability Measure). Let F be an algebra in Q. A function P : F — [0, 1] is
a probability measure if:

1. VEeF:PE)>0
2. P <U1{=1 Ei) = Zle P(E,) for disjoint sets E{,E,, ... ,E, € F
3. PQ) =1

Two probability measures P and Q, defined on an algebra F, are equivalent if they agree
on the same null-sets, P(E) = 0 & Q(E) = 0, where E € F. A collection (L, F, P) of a state
space L, a set of observable events F, where F is an algebra, and a probability measure P
defined on F is called a probability space.

'The material of this section is standard, cf. Williams (1991).
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In general, securities traded in financial markets are risky bets since their future prices are
uncertain. In our simple setup, a natural way to model securities with uncertain future prices
is via functions of the economy’s state at the terminal date. This motivates the introduction of
random variables and random vectors into the model.

Definition 3 (Random Variable).  Given a probability space (Q, F, P), a random variable
S is a function

S:Q->R,, 0~ S(w)
that is F-measurable, i.e., for each E € {[a,b[: a,b € R, a < b} one has
STIE)y={weQ:Sw)eE}eF
A function
5:Q-RK o~ Sw)
is a random vector if its component functions
S Q- R, 00 SKw),ke(l,....K)

are F-measurable. A random vector S is F-measurable if all component functions S* are
F-measurable.

It is sometimes convenient to write SEF for “S is F-measurable’ where S can be either a
random variable or a random vector.

Definition 4 (Expectation). Let a probability space (Q, F, P) be given where  is finite.
The expectation EP[S] of a random variable (or vector) S under a probability measure P is
defined as

E’[S] = 2 P(w) - S(w)

wEQ

The expectation of a random variable is real-valued whereas the expectation of a random
vector is again a vector.

With respect to this definition, it is important to recall that we have defined random
variables as taking only positive values on the real line. Otherwise we ought to be more
careful.

So far we have assumed that at date O there is uncertainty with regard to the state of the
economy at the terminal date 7. It seems more realistic, however, to assume that uncertainty
resolves gradually over time. As before, let Q be the set of all possible states of the economy
at date 7. Assume now that new information about the true state of the economy at date 7
arrives at dates t € {0, 1, ..., T}. This concept is general enough for us to interpret the time
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interval [7,7+ 1[, 0 <t < T, between two consecutive dates as a week, a day, an hour or any
other unit of “real” time.2 We have:

Definition 5 (Filtration). A filtration F is a non-decreasing family of algebras in Q, i.e.
F= (Pt)te{o,...,T} where FO Cc Pl c...C PT—I C FT'

We call the collection (2, F, F, P) a filtered probability space. In the present context, the
filtration is a model for the resolution of uncertainty over time. If an event £ C Q is in 7, then
it is known at date ¢ whether the event may happen or not. In other words, if E is in 7, one can
decide whether the true state e is in [E or not. Hence, F, can be interpreted as the information
set at date 7. In general, we assume that Fy = {#J, Q} and F; = g(Q), the power set of Q.
Economically, this translates into “nothing is known at the beginning of the economy” and
“everything is known at the end of the economy”, respectively. The requirement that the 7, be
non-decreasing means that information cannot be lost.

In such a dynamic context, one can generalize the idea of a random variable (vector)
straightforwardly to obtain a stochastic (vector) process. This enables one eventually to model
price dynamics of securities.

Definition 6 (Stochastic Process). A stochastic (vector) process (S,)e(o
ordered sequence of random variables (random vectors) S;,t € {0, ..., T}.

T} IS a date-

,,,,,

Suppose that (S,),co, ... 7 represents the price process of a security. Since the price of a
security at the terminal date depends on the state of the economy at this date, it is reasonable
to assume that its price at date ¢ depends on the information 7, available at date ¢. This gives
rise to the following concept.

Definition 7 (Adaptation). A stochastic (vector) process (S,),eqo, ..} 1S said to be adapted
to a filtration F = (F,),cq0,... 1y iV 1 S, is Fi-measurable.

If security price processes are adapted to the filtration then the economy is informationally
efficient. The mathematical formulation here corresponds to weak form efficiency. In financial
models, one can sometimes find the opposite situation as well: information is generated by
security price processes. To handle such situations one needs yet another concept:

Definition 8 (Algebra Generation).  The algebra generated by a random variable (or
vector) S is denoted F(S) and is the smallest algebra with respect to which S is measurable.
The algebra generated by a stochastic (vector) process (S,)cqo,... ) Up to date t is denoted
F(S;:i€{0,...,t}) and is the smallest algebra with respect to which all random variables
(vectors) S;,i € {0, ... ,t} are measurable.

In light of this definition, a stochastic process (S,),c(o,... 7} generates the filtration F =
(Foreqo,... 1y where F, = F(S; 1 i € {0, ..., 1}). Of course, the stochastic process is adapted to
the filtration it generates. We also need the following definition:

2Cases with varying length of the interval [¢, ¢ + 1[ can also be included.
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Definition 9 (Stopping Time). Let (R, F,F, P) be fixed. A random variable v : Q — [0,T] C
R, is a F,-stopping time if {w : T(w) <t} € F,; forall0 <t < T.

We now turn to martingales. Heuristically, a martingale embodies the notion of a fair
investment. Consider a risk-neutral investor who plans to invest in a stock.® This investor
would call the investment fair if the expected discounted price of the stock at some future
date equals its present price. The investor would deny buying the stock if the actual price is
higher. He would, however, always agree to buy if the price of the stock is below the expected
discounted price. A stock price process satisfying the condition that the expected discounted
price at any future date equals its price today is a so-called martingale.

To formally define a martingale, the concept of conditional expectation is needed. Taking
expectations as proposed in the respective definition presumes that nothing is known about
the future state of the economy at the terminal date. In other words, the minimal algebra
{@,Q} forms the information set. If uncertainty is gradually resolved, the information set
enlarges over time and allows better expectations to be taken. Here, better means that expec-
tations are taken conditional on a relatively enlarged information set. Formally, one has the
following.

Definition 10 (Conditional Expectation). Let (Q, F, T, P) be given. The conditional expecta-
tion Ef [S] of a random variable (vector) S given information F, is the unique random variable
(vector) that satisfies:

1. Ef[S] is F;-measurable
22.VEeF,: EP[Ef[S] ARl = EP[S - 1g]

For notational simplicity, we denote the conditional expectation by Ef [-] instead of
E” [-|7,] as often found in the literature. This eventually enables the definition of a
martingale.

Definition 11 (Martingale). Let (Q,F,F, Q) be given. A F-adapted stochastic process
(Spieqo,... 1y is a (vector) martingale under the probability measure Q if

Vi,s > 0,045 < T:E2[S,,,] =S,

A probability measure Q that makes a stochastic process—defined on some filtered
probability space (Q, F,F, P)—a martingale is called a martingale measure. Whenever Q is
P-equivalent, it is called a P-equivalent martingale measure.

It may become necessary to change from one probability measure to an equivalent prob-
ability measure, say from P to Q. This is where the Radon-Nikodym derivative comes into

play.

3 An investor is risk neutral if he/she is indifferent between a sure amount of money and a risky investment
with an expected (discounted) payoft equally as high.
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Definition 12 Let (Q,F,P) be given where Q is finite. For a P-equivalent probabil-

ity measure Q, the Radon-Nikodym derivative L, which is actually a random variable, is
defined by

O(®)
Vo € Q: L) = { 29 for Pl) # 0
0 forP(w)=0

We conclude this section with a demonstration of how the Radon-Nikodym derivative
may be applied in computing expectations. Let two equivalent probability measures P and Q,
defined on an algebra F in a finite state space €, be given. It holds that EQ[S] = EP[LS] for
a random variable (vector) S defined on (Q, F, P). Easy manipulations of EQ[S] verify this
claim:

EC[S]= )’ Q@) - S(w)

weQ
O(w)
6062‘5 @) 5y 5@
= Z P(w) - L(w) - S(w)
weQ
= EP[LS]

4.3 DISCRETE MARKET MODEL

4.3.1 Primitives

We consider a model of uncertainty as examined in the previous section. The model econ-
omy lasts for a fixed period [0, T], where T € N and T < oo. A filtered probability space
(Q, (), F, P) is fixed where Q is the finite state space of which each element w € Q rep-
resents one possible state of the economy at the terminal date 7. New information about the
true state of the economy at date 7 only arrives at dates f € {0, 1, ..., T}.4 Economic activity
is also observed at these dates only. At date T all economic activity ends. A time interval
¢, + 1] belongs to each date t < T — 1 where there is no economic activity. The filtration
F = (F)eqo,...ry satisfies Fy = {#, Q} and Fr = ¢(Q). The probability measure P is strictly
positive for all ® € Q, i.e. Vo € Q : P(w) > 0. As a consequence, the probability measure P
is uniquely defined up to equivalence.

There is a set S of K + 1 securities available in the marketplace whose price processes are
modeled by the vector process

.....

“Typically, models in which information only arrives at certain points in time are referred to as discrete
time models.



Risk-Neutral Valuation 959

The first security, k = 0, is called bond and its price process is denoted (S?)ZE (0,...7}- The
bond plays a special role since it is assumed to be risk-less and serves as numeraire, so we set

Sg =15 Formally, risk-less means that the random variable

S?:Q—>R++,a)b—>S?(a))

is F,_j-measurable, i.c. Vi > 1 : S € F,_,. In other words, the actual value of §¥ is already
known at date ¢ — 1. The remaining K securities are risky and modeled by a stochastic process
filtration F. Recall that adapted means that the random variables Sﬁ‘ Q-R, L, 0- Sf(w)
are measurable with respect to 7, i.e. Vk, ¢ : Sf(co) € F,. In other words, the actual value of Sf
is not known until date ¢. Finally, we denote the discount process by (f;),c(o,... ) and define

Vt:p, = (S?)_1

.....

4.3.2 Basic Definitions

We will now introduce several central expressions that are closely related to securities trading.
Definition 13 (Portfolio). A portfolio ¢, is a K + 1-dimensional vector ¢, € RE+,

A portfolio ¢, = (¢?, ..., ¢X) gives the number ¢¥ of every security k € {0, ..., K} held
by an agent at date ¢. For example, d)? represents the number of bonds in the portfolio ¢, at
date t. The portfolio ¢, has the natural interpretation of being the initial endowment of an
agent since agents will be allowed to form a new portfolio for the first time when prices S, are
announced. This portfolio is then labeled ¢, and has to be held during the time interval [0, 1[.

Definition 14 (Value of Portfolio).  The market value V, of a portfolio ¢, in S at date t is
given by a function V, : REF! x Rfil — R where

= ]S fort=0
Vt(¢’S)={¢['Sl‘ fOr[E{l,...,T}

Definition 15 (Predictability). ¢, is predictable if it is F,_,-measurable, i.e. ifVt > 1 : ¢, €
Fi_y.

Predictability implies that the portfolio ¢, be formed at # — 1 and kept constant during the
interval [t — 1,¢]. At date ¢, when prices S, are announced, the portfolio has a market value of
Vi($,S) = ¢, - S,. This amount can then be used, for instance, to form a new portfolio ¢, |,
which is to be held constant over the interval [z, ¢ + 1], and so forth.

>This assumption comes along with virtually no real loss of generality but it facilitates intuition consid-
erably.
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Definition 16 (Trading Strategy). A trading strategy is a predictable vector process

(¢t)te{0,.4.,T}

with component processes (d)f)te{(),...,T}’ k €{0,....,K}. (eqo,...1) is predictable if Vi >
1: ¢, is predictable.

Two other processes are directly associated with each trading strategy.

Definition 17 (Value Process, Gains Process).  We have the following two important pro-
cesses:

1. Thevalue process (V(¢, S))eqo,... 1y of a trading strategy in S is a real-valued, F-adapted
process where V (¢, S) is given by definition 14.

2. The gains process (G(¢,S))co,... 1y of a trading strategy in S is a real-valued, F-
adapted process where we set Gy = 0 and where G, : RKT! x Rfil — Rwith G,(¢,S) =

Z;:l d)i : (Sl - Si_l)fOFI > 1.

In the analysis to follow, two classes of trading strategies are of particular interest: self-
financing and admissible trading strategies.

Definition 18 (Self-Financing Strategy). A trading strategy is self-financing if and only
ifVvt:1<t<T—-1:¢,-S;,=¢,-S; or equivalently if and only if Vt: 1 <t <T—1:
Vi@, S) = Vy(d,S) + G(,S). Neither are funds withdrawn nor additional funds invested
at dates betweent=1andt =T — 1.

Definition 19 (Admissible Strategy). A trading strategy ¢ in S is admissible if ¢y =0
(no initial endowment/value), if it is self-financing and if its value process (V(¢,S))eqo, ... 1)
is bounded from below, i.e. if it satisfies ¥Vt : V(¢p,S) > —a,a > 0. T denotes the set of all
admissible trading strategies.

Agents who can only implement admissible trading strategies are not allowed to produce
a position of too much debt. In other words, agents cannot implement trading strategies that
possibly lead to infinite debt (bankruptcy).

To conclude this sub-section, assume that markets are perfect (i.e. no transaction costs,
complete and symmetric information, etc.) and perfectly liquid. In summary, one ends up with:

Definition 20 (Discrete Market Model). A discrete market model M is a collection of:

a finite state space €

a filtration F

a strictly positive probability measure P defined on go(QQ)

aterminaldate T € N, T < co and

a set S = {(Sf)te{o,...,T} 1k € {0,...,K}} of K + 1strictly positive security price pro-
cesses

We write M = {(Q, (), F, P),T,S}.
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4.4 CENTRAL RESULTS IN DISCRETE TIME

This section’s main objective is to state the Fundamental Theorem of Asset Pricing in a
discrete market model. In economic terms, central topics of this section are arbitrage-freeness,
arbitrage-free contingent claim prices and market completeness.

A central problem in financial economics is the determination of fair contingent claim
prices. One can think of contingent claims as being derivative securities, consumption payoffs
or arbitrary claims payable at 7. In order to proceed, however, a formal definition of a
contingent claim is needed.

Definition 21 (Contingent Claim). A contingent claim A € lel is a non-negative random
variable

Ar Q>R , 0 Ar(w)
Ar(w) is the amount payable if state w € Q unfolds.
A natural question that arises is that of the attainability of contingent claims.

Definition 22 (Attainability). A contingent claim Ay is attainable if there exists an admissible
trading strategy ¢ € T that generates its payoff at maturity®, Vi (¢p) = Ay, and if Ay = V()
is the price or value of the contingent claim at t = 0. A C lel denotes the set of attainable
contingent claims.

Another question is which contingent claims are super-replicable.

Definition 23 (Super-Replication). A contingent claim Ay is super-replicable if there exists
an admissible trading strategy ¢ € T that generates a payoff dominating the contingent claim’s
payoff, Vp(¢) > Ay, and if Ay = V(@) are the associated super-replication costs at t = 0.7
Such a trading strategy is said to super-replicate the contingent claim. A* C Rfll denotes the
set of super-replicable contingent claims.

Obviously, the set of attainable contingent claims A is in general a sub-set of the set of
super-replicable contingent claims A*.

Definition 24 (Linear Price System). A linear price system is a positive linear function
¢:A =R, with

Va,beR,, [(Ap)=0oA4;=0
VA7 AL €A\ Ca-Ap+b-Al)=a-L(Ap) +b- (AL

SHere and in the following, we drop dependence on S in the notations V,(¢, S) and G (¢, S).
7Sometimes the definition includes the requirement that the trading strategy be chosen such that it
minimizes the super-replication costs A,.
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P denotes the set of all price systems that are consistent with the market model M, i.e. where

VEeP. Vo eT: (Vi) = Vo(e)

To further analyze pricing issues, the formal concept of an arbitrage opportunity proves
useful.

Definition 25 (Arbitrage Opportunity). An arbitrage opportunity is a self-financing, admis-
sible trading strategy ¢ € T whose value process satisfies Vy(¢) = 0 and Eg [Vy ()] > 0.

Definition 26 (Weak Arbitrage Opportunity). A weak arbitrage opportunity is a self-
financing strategy ¢ (not necessarily admissible) whose value process satisfies Vo (¢p) = 0 and

V() > 0 with ES [V (¢)] > 0.

It should be clear that a security market where arbitrage opportunities exist cannot be in
equilibrium. An arbitrage opportunity arises, for example, if there are two or more different
prices for the same contingent claim. A simple arbitrage strategy would then be to sell
the contingent claim at a high price and to buy it at a lower price, thereby locking in the
difference as a risk-less profit. The profit is risk-less because the payoffs at date 7 of one
contingent claim long and one contingent claim short perfectly compensate each other. Of
course, every agent would try to achieve such a risk-less profit. Local non-satiation of agents
is a sufficient condition. Since agents’ budget sets are unbounded in the presence of arbitrage
opportunities, markets would inevitably be in disequilibrium. That is why the absence of
arbitrage opportunities is a crucial property of equilibrium models. However, from an economic
point of view, the assumption of arbitrage-freeness is rather mild.®

In light of the above considerations, establishing conditions that guarantee the absence
of arbitrage opportunities in the market model M is obviously of great importance, which is
what we will do next. To begin with, denote Q to be the set of all probability measures Q that
are equivalent to P and that make the discounted security (vector) price process (8,5,)cqo, ... )
a martingale. At this point, the main concepts for reproducing some of the central results of the
risk-neutral valuation approach—as originally formalized through the works of Harrison and
Kreps (1979) and of Harrison and Pliska (1981) (afterwards HK79 and HP81, respectively)—
are complete.

Lemma 1 (Weak Arbitrage implies Arbitrage) The existence of a weak arbitrage opportunity
¢ implies the existence of an arbitrage opportunity.

Refer to section 4.7 for a proof of this result and the following ones. The next proposition
is important from an economical point of view.

8For a discussion on this and other possible model assumptions (e.g. the law of one price) refer to section
1.2 of Pliska (1997).
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Proposition 1 (HP81, prop. 2.6). There is a one-to-one correspondence in the market
model M = {(Q, (Q),F, P), T,S} between price systems { € P and P-equivalent martingale
measures Q € Q via:

a. {(Ar) =EC(pr - Arland
b. Q(E) =¢ (S91) .E € Q)

Proposition 1 states that there is a one-to-one correspondence between a completely eco-
nomic concept, a price system, and a completely probabilistic concept, a martingale measure.
It should not come as a surprise that this has important implications for the market model. The
importance is impressively illustrated by the following theorem:

Theorem 1 (Fundamental Theorem). Consider the market model
M ={(Q, p(Q),F,P),T,S}
The following three statements are equivalent:

1. There are no arbitrage opportunities in the market model M.
2. The set Q of P-equivalent martingale measures is non-empty.
3. The set P of consistent linear price systems is non-empty.

This theorem can be generalized to allow for settings where time, processes and trading
are continuous and the time horizon is infinite. While the objects studied remain essentially the
same, the mathematical machinery needed in such cases goes well beyond the basic concepts
presented in this chapter. The subsequent section considers the continuous case.

Starting with the economically plausible assumption that a market model is free of arbi-
trage opportunities, Theorem 1 implies that there exists an equivalent martingale measure.
Why this last implication is so important should become clear in light of the following two
results:

Corollary 1 (HPS81, p. 228). If the market model M is arbitrage-free, then there exists
a unique price A associated with any contingent claim Ay € A. It satisfies VQ € Q : Ay =

EZ1p,Ar).
For arbitrary dates ¢t € {0, ..., T}, the following result emerges.
Proposition 2 (HPS1, prop. 2.9). For every Ay € A
BVi$) = B2 [Py - Ar]

for all dates t € {0, ..., T}, for all trading strategies (¢,),e(0,...1) € T that generate A and
for all P-equivalent martingale measures Q € Q.

Proof. HP81, Harrison and Pliska (1981), p. 230. 0
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Suppose Theorem 1 applies to the market model M. From corollary 1 and proposition 2
one obtains as the date 7 price A, of an attainable contingent claim Ay

A, =7 EL(Br - Ap]

with everything defined as before and particularly Q € Q. This equation states that the date ¢
price of an attainable contingent claim is simply the conditional expectation of its discounted
payoff under an appropriate probability measure multiplied by the price of the bond.® This
seems remarkably simple. Yet considerable effort has to be put in when one wishes to apply
this method to the real marketplace, i.e. when a specific price has to be computed.!?

A brief discussion of market completeness should conclude this section.

Definition 27 (Market Completeness). The market model M is complete if it is arbitrage-
12l

free and if every contingent claim is attainable or equivalently if A = R™.

In discrete time, a convenient characterization of complete markets is possible.

Proposition 3 (HK79). Suppose that the market model M is arbitrage-free. The market
model M is complete if and only if Q is a singleton.

HK79 do not give a formal proof but the argument is straightforward. In discrete time,
the resolution of uncertainty can generally be represented by so-called event trees.!! If one
calculates martingale branch probabilities, one observes that these are unique if markets are
complete. The corresponding equivalent martingale measure is then unique as well. Hence, Q
is a singleton if markets are complete.

The converse statement follows from the observation that if markets are incomplete then
there are always many probability measures contained in Q. In fact, there are an infinite
number of such probability measures in general. So Q has to be a singleton for markets to be
complete. For a formal proof refer to Lamberton and Lapeyre (1996), pp. 9-10.

As an aside, we want to demonstrate that, under certain circumstances, one can interpret
discounted martingale probabilities as Arrow-Debreu security prices.'> The defining property
of an Arrow-Debreu security is that it pays off one unit in a predetermined state and nothing in
other states. Consider an arbitrary Arrow-Debreu security, say, for example, the one that pays
in state @ € Q. Given the unique P-equivalent martingale measure Q of a complete market
model M its price Ag’ at date 0 must be according to proposition 1—with the 1 at the @-th
position in the payoff vector

AZ = pE2(, ... 1,...,0)]
= prO(®) - 1

’Note that g = 5.

19One can, for example, rely on statistical estimation methods or on calibration approaches to come up
with a market-consistent martingale measure Q for a given market model.

"Event trees are one possible way to graphically represent filtrations. The main feature of these trees
is that every node has a unique predecessor. They should be carefully distinguished from recombining
trees that are sometimes used to illustrate the evolution of the stock price process in the binomial option
pricing model. In recombining trees, nodes may have more than one predecessor.

12Yet another expression for Arrow-Debreu security price is state price.
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Consequently, for there to be no arbitrage the price of the chosen Arrow-Debreu security must
equal the discounted probability under the unique P-equivalent martingale measure for state @
to pertain. This insight is central to options pricing and is also applied in the continuous case.

4.5 CONTINUOUS-TIME CASE

In the continuous-time case, both the time interval and the state space are subsets of the
real line, r € [0, 7] € R, Q C R. Again, uncertainty is represented as a filtered probability
space (Q, F,F, P) where F = {F,¢(o 7} is now an increasing family of sigma algebras'® with
Fo={0.Qland F = F.

The set of tradable assets is denoted S and consists of K + 1 stochastic processes, each
one modeling the evolution of an asset’s price over time, Sk .10, T] x Q - R. We normalize
the price of the risk-less bond by assuming that S? =1& f,=1,t €[0,T], making it the
numeraire of the economy and setting the risk-less rate equal to zero. For the moment, we set
K =1 such that there is only one risky asset in the economy (e.g. stock, stock index, short
rate). We simply write S for S'.

We now proceed, following formally Protter (2005), ch. 2, by defining “good” trading
strategies for which stochastic integrals—i.e. the analogon of the gains process in definition
17—are defined.

Definition 28 (Simple Predictable Trading Strategy). A trading strategy (¢,),e(0.1) is said
to be simple predictable if ¢, can be represented by

& = Polo(®) + Z ¢i1(fis7i+1](t)
i=1

for afinite sequence of stopping times0 =7, < ... <1, < T < 0. Also, ¢p; € Fr,— and |¢l-| < 00
almost surely. The set of such trading strategies is denoted H.

Strategies of type H are the fundamental building block for stochastic integration in
continuous time. For a given stochastic process S, we define a linear mapping /, : H — LY
where L? is the space of finite valued random variables with appropriate topology. To this end,
let

S;)

i+1 i

I(,5) = doSo + ). #,.(5,
=1

for¢p e HandtimesO0 =1 <.. <1, <t < T < co. We write [,(¢, S) = fot ¢,dS, for the case
where n — oo. The value process of a trading stragy ¢ in S is denoted (V,(¢, $)),e0.1)-

3A sigma algebra is closed under countably infinite unions of sets contained in the algebra such that
condition 3. in definition 3 is to be replaced by 3. E |, E,, ..., E_ € F = Uzl E, € F. Cf. Bhattacharya
and Waymire (2007), ch. 2.
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Definition 29 (Gains Process).  The gains process (G, )0,y of a trading strategy
¢ € Hin S is given by

+

t n
G, 9) = / $ydS, = nhn.}o 2 ¢tl-(St,-+1 - Sti)
0 s
with0=1 <...<t, <t <T < o0.
We then get the following central definitions.

Definition 30 (Total Semimartingale). A process S is a total semimartingale if S is right
continuous with left limits (cadlag) and F-adapted and if 1, : H — L is continuous.

The continuity requirement in the definition ensures that small changes in the trading
strategy (or a portfolio at a specific time) cannot lead to big perturbations in the value of the
gains process or the value of a portfolio.

Definition 31 (Semimartingale). A process S is a semimartingale if, for each stopping time
© € [0, T}, the stopped process (Sx;)ieqo0.1 I @ total semimartingale.

These concepts might seem rather abstract. However, for a continuous market model they
define on the one hand the set of acceptable trading strategies and on the other hand the set of
stochastic processes appropriate to model a financial market in general and the price process of
a traded asset in particular, respectively. If either the trading strategy is not simple predictable
or the stochastic processes, i.e. the assets’ price processes, are not semimartingales then the
gains process of definition 29 is not defined. Fortunately, both concepts are quite general and in
particular the class of semimartingales encompasses as special cases almost any, if not every,
stochastic process used in mathematical finance for asset pricing.

For financial applications, a further characterization of semimartingales is helpful (cf. for
details Protter (2005), p. 55).

Definition 32 (Decomposable Process). An F-adapted process S is decomposable if it can
be decomposed as S, = Sy + M; + A, where My = Ay = 0 and M is a locally square integrable
martingale, and A is a cadlag, F-adapted process with paths of finite variations on compacts.'*

Two processes are worth mentioning as special cases of semimartingales (cf. Protter
(2005), p. 17 and p. 20).

Definition 33 (Brownian Motion).  Let (Z,),¢(0.1) be an F-adapted process taking values in
R (Rk, 1 < k < ). Then Z is a (k-dimensional) standard Brownian motion if:

1. Zy = 0 almost surely

2. Z,—Z is independent of F, for 0 < s <t < T

3. Z, - Z, is a Gaussian random variable (vector) with mean zero and variance of t —s
(variance matrix (t — s)B for a given non-random matrix B and k > 1)

14For example, if A is deterministic it has finite variations on compacts.
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According to Theorem 26 in Protter (2005) there always exists a modification of a standard
Brownian motion that has continuous paths almost surely.

Example 1 (Bachelier Model).  In the Bachelier model, the index process (S,)g(o.1 is given

as an arithmetic Brownian motion with S, = S + fot udt + fot odZ, where Z is a standard
Brownian motion and u,o > 0 are fixed. Obviously, S is decomposable and therewith a
semimartingale.

Definition 34 (Lévy Process).  Let (N,),e(o.17 be an F-adapted process taking values in R
and Ny = 0 almost surely. Then N is a Lévy process if:

1. N,— N, is independent of F for 0 <s <t <T

2. N; — N has the same distribution as N,_, for 0 < s <t < T, i.e. it has stationary incre-
ments

3. lim,_,;, N, = N, almost surely, i.e. it is continuous in probability

By Theorem 30 of Protter (2005) there always exists a unique modification of a Lévy
process that is cadlag and also a Lévy process.

Brownian motion and Lévy processes are central in modeling financial markets. In fact,
all models presented in this book are either built on Brownian motion (e.g. the Black-Scholes-
Merton model, cf. Black and Scholes (1973) and Merton (1973)) or on a Lévy process (e.g. the
jump-diffusion model of Merton, cf. Merton (1976)) or on both (e.g. the stochastic volatility
jump model of Bates, cf. Bates (1996)).

We need as before a further qualification of trading strategies.

Definition 35 (Admissible Strategy). A trading strategy (¢,),ecp0.r) € H in S is admissi-
ble if ¢y =0 and if for ¢ dS; > —a with « > 0 and S a semimartingale. We denote this set
by T.

Admissibility in continuous market models ensures, apart from the avoidance of
bankruptcy of agents, that certain trading strategies known to generate arbitrage opportu-
nities (e.g. the so-called doubling strategy) are excluded. This is because such strategies rely
on the possibility of producing a position of infinite debt (in the limit).

Definition 36 (Self-Financing Strategy). A trading strategy (¢,),e(0.1) € H is self-financing
if

t
¢tSt = ¢0S0 + / ¢sdss
0

Gains from trade are only induced by random changes in S. ¢,S, is cadlag.

The concept of an arbitrage opportunity carries over from the discrete time case.
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Definition 37 (Arbitrage Opportunity). An arbitrage opportunity in S is a self-financing,
admissible trading strategy ¢ € T whose value process satisfies Vo(p,S) =0, Vy(¢p,S) >0
and P (VT(ci), S) > 0) > 0.

We now follow the tradition initiated in the seminal paper by Delbaen and Schachermayer
(1994) and define a number of sets central to arbitrage pricing. We have:

A= fOT ¢,dS,, ¢ € T}:all terminal wealths (i.e. contingent claims) that can be generated
by admissible trading strategies in the semimartingale S

B=A- £9r: all functions dominated by elements of A with £9r being positive finite
random variables

A% = A N L: the intersection of A with £, the space of bounded functions

B® = B N L£®: the intersection of B with £2°; B™ denotes the closure of B®

We then have the following conditions.

Definition 38 (NA—NFLVR). A semimartingale S satisfies the no arbitrage condition (NA)
ifB® N LY = {0}. It satisfies the no free lunches with vanishing risk condition (NFLVR) if

B nLy = {0}
Finally, we can state the Fundamental Theorem of Asset Pricing for the continuous setup.

Theorem 2 (Fundamental Theorem of Asset Pricing—One Dimensional). Let S be a

bounded real-valued semimartingale. There exists a P-equivalent martingale measure Q for S
if and only if S satisfies NFLVR.

Proof. Cf. Delbaen and Schachermayer (1994). For a comprehensive exposition of the whole
theory refer to Delbaen and Schachermayer (2004). |

This version is the original one which, however, holds for the general case of a multi-
dimensional semimartingale S as well.'> With respect to the above set definitions, we have
mainly to make, for K > 1, the change

K T
A= {Z/ Prdst, ¢ e'll‘}
k=170

Here, each S¥ is a semimartingale. We now have everything together to define the general
continuous market model.

15“The process S, sometimes denoted (S,) R, is supposed to be R, -valued, although all proofs work
with a d-dimensional process as well”, cf. Delbaen and Schachermayer (1994), p. 464.
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Definition 39 (Continuous Market Model). A continuous market model M is a collection of:

a continuous state space Q C R

a filtration F of non-decreasing sigma algebras

a probability measure P defined on the sigma algebra F

a terminal date T,0 < T < oo

a set of simple predictable trading strategies H for which gains processes are defined and
a set of K + 1 tradable assets S = {(S¥),eo.71 : k € {0, ..., K}} where each S* is a semi-
martingale and S° is (locally) risk-less and strictly positive

We write M = {(Q,F,F,P), T,H,S}.
We then have:

Theorem 3 (Fundamental Theorem of Asset Pricing—Multi-Dimensional).  Let a contin-
uous market model M be given. There exists a P-equivalent martingale measure Q (EMM)
for S, the set of semimartingales representing tradable assets, if and only if this set satisfies
NFLVR.

In practical applications there are basically two routes to apply this theorem:

model without EMM: one has a model with real-world dynamics and is able to derive
an EMM thereby ensuring NFLVR

model with EMM: one starts with a model with risk-neutral dynamics under an EMM
and uses it—knowing that NFLVR applies—to value contingent claims (e.g. options and
other financial derivatives)

Let us switch back to the case K = 1, i.e. with one risky asset only (the general case
is easily accounted for by a change of notation). A contingent claim is a Fp-measurable,
integrable payoff A at time 7. A contingent claim is attainable (or redundant) in the market
model M if there exists an admissible trading strategy ¢ € T that is self-financing and has
Vr(¢,S) = Ar. In other words, the payoff can be perfectly replicated by a strategy in the
tradable assets.

For an attainable contingent claim A € A with replicating strategy ¢ € T we have

T
Ap = Vi(,S) = Vo(h, ) + /0 .45,
+

Taking expectations under the EMM yields

T
ES(V7($.9)) = Vo(¢, S) + ES < /0 ) ¢>st§>

Since the last term equals zero due to the martingale property of S we deduce the risk-neutral
pricing formula (cf. Harrison and Pliska (1981), p. 240)

Vo(#,5) = ES(V1(6.9) 4.1
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The present value of a contingent claim equals its expected payoff under the EMM. 1t is easily
verified that arbitrage opportunities arise if equation (4.1) does not hold. With g, # 1 we get

V(9. S) = E2(B, V(. 5)) (4.2)

which means that the present value equals the expectation of the discounted payoff under the
EMM. Similarly, for 0 < ¢t < T we finally have

Vi(@.9) = 7 BL(Br V(. 9)) (4.3)

To define the value process (A,),ejo,77 Of an attainable contingent claim A € A identify
A, =V,(,5) for ¢ €T, self-financing and Ay = V (¢, S). We then see that the discounted
value process is a martingale under the EMM

EC(BA) = BE(BrVi(4.5) = A,

which follows immediately from (4.2) and (4.3).

Finally, let us consider completeness of the continuous model M. Define the set of all
Fr-measurable, integrable payoffs Ay by C. The market model is then complete if C = A, i.e.
the set of all contingent claims coincides with the set of attainable contingent claims.

Proposition 4 (Market Completeness). The continuous market model M is complete if the
set of P-equivalent martingales measures Q is a singleton.

This result also holds for the multi-dimensional case. It is sometimes called the Second
Fundamental Theorem of Asset Pricing. Cf. Bjork (2004), Theorems 10.17 and 14.18, for
versions of this result for the one- and multi-dimensional case, respectively, when Brownian
motion drives uncertainty.

4.6 CONCLUSIONS

This chapter looks at the Fundamental Theorem of Asset Pricing and related concepts and
results. It is not possible to cover all relevant aspects of this cornerstone of modern financial
theory in a single chapter. However, it provides at least an overview of the fundamental
framework on which all subsequent theoretical and numerical analyses are based.

In particular, all subsequent chapters will make heavy use of the risk-neutral discount-
ing approach to value European and American options. Especially when working in higher
dimensional settings (with multiple risk factors) and using Monte Carlo simulation as valuation
method, the power of the risk-neutral valuation paradigm will be impressively illustrated.

4.7 PROOFS

4.7.1 Proof of Lemma 1

Proof. If for ¢ we have V,(¢) > 0O then it already satisfies definition 25. So assume the
contrary. Then there exist t <T,E € F,,a <0 with ¢,-S,=a on E and ¢, S, <0 for
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t <u < T. Now define another trading strategy y through y,, = 0 for u < ¢ and y,(0) = 0 if
u<taswellasw & E. If u > tbut w € E set

o [ ¢w) - a/S%w) fork=0
W“(w)z{qb%(w) " fork=1,2... K

It remains to show that this predictable trading strategy is self-financing and admissible. For
w€eRE

Vipl =S = (¢t+1 - a/SO + Z ¢/;+le —a=0
by the definition of a such that y is self-financing. For u > f and @ € E one has similarly

SO
v, S, = (¢° - a/S0S0+Z¢kSk b, S, - SO“_o
t

implying V,(y) > 0 and so y is admissible. Realizing that S(} > 0 implies Vy(y) > 0 on
E with Eg [Vr(w)] > 0 yields the assertion of the lemma (cf. Harrison and Pliska (1981),
p- 228). O

4.7.2 Proof of Proposition 1

Proof. First, let Q € Q and define { by (a). Take an arbitrary ¢ € T and write

T-1

BrVe(h) = Pr(dr - Sp)+ Y Bl = brat) - S,
t=1

T
= ﬁl(d’l : Sl) + Z d)t ' (ﬁtst - ﬂt+lst+l)
=2

after several regroupings of terms in the first sum. Now use the definition of ¢
(Vi) = B2 V()]
T
=ES [B1(&) - SO +ES | X, (BS, = BraiSee)
=2

=E2 [p1($, - 5))]

since, by assumption, (8,S),c(o,.. 7} is @ martingale under Q and ¢ is predictable. The last

term gives Eg[ﬂl (@1 - SDI =1 - oSy = Vy(¢p) showing consistency of .
Second, assume ¢ € P and define Q by (b). For o € Q one clearly has Q(w) = ¢ (Sglw) >
0 since ¢ is consistent with M. This establishes the first characteristic of a P-equivalent
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martingale measure. The second follows from observing that the trading strategy ¢ € T with
¢° =1 and ¢ = 0 for k # 0 yields

Vo(d) = C(Vi())
= {(591g)
=1

such that Q(€2) = 1. As a consequence, {(Ay) = ﬂTEg[AT] forA; € A.

It remains to establish that Q is a martingale measure for (4,S;),co, .. r}- The case k = 01s
trivial—this is the risk-less numeraire. Take k # O arbitrary and consider the trading strategy
¢ € Twith¢! =1, and ¢? = (8¥ /591, , for0 < 7 < T being a stopping time. Furthermore,
qbf = 0 for all other securities i and all dates ¢. Obviously, V(¢) = Sg and V(o) = (Sl; / S(T))S(% =
S9.8.S%. We get

E(V(e) = £(896.5)
= E(()z(ﬂTSgﬂrS];)
= EJ(5.5})
=Sp

where the last equality follows from consistency of {. Realizing that k is arbitrary, this yields
the last characteristic Q has to fulfill to make the discounted securities process (f,S;);c (0,..T)
a vector martingale. So Q € Q completing the proof (cf. Harrison and Pliska (1981),
p- 227). O

4.7.3 Proof of Theorem 1

Proof. Suppose Q is non-empty. Proposition 1 then implies that P is non-empty as well.
Consider a trading strategy ¢ € T with V,(¢p) = 0. Then there is a { € [P such that {(Vy(¢)) =
V(¢) = 0 and so by the definition of a linear price system Vy(¢) = 0. It remains to show that
the first statement implies the second and third.

Start by defining two sets:

AT ={A; € AE[(Ap) > 1}
A" = (A} Ay = Vi(¢), V() = 0, ¢ self-financing }

Obviously, if there are no arbitrage opportunities then A* N A® = 1. The next step is to show
that there exists a consistent linear price system ¢ € P. Since A* is a closed and convex subset
of RI®l and A® is a linear subspace, the Separating Hyperplane Theorem can be applied to
establish the existence of a linear functional L on R such that:

1. L(A7) = 0 for A7 € A” and
2. (A7) > OforA; € AT
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Now define {(A7) = L(A7) /L(Sg) which satisfies definition 24. One needs to show that
indeed § € P, i.e. that it is consistent with M. Take an admissible trading strategy ¢ € T and
define a new self-financing trading strategy by

o # = Vo(¢p) fork=0
! Pt fork=1,2,....K

It holds Vy(y) = 0 and Vy(y) = V() — Vo(q'))S(% with V(y) € A° so that £(V(y)) = 0.
We get

CVrw)) = ¢ (V@) = Vo(@)S).)
= C(Vr(e) — Vo(@)Z (59)
= {(Ve($) = Vo(@)
=0

using linearity and normalization of ¢ relative to S0, ie. & (S(}) = 1. From this, {(Vy(¢)) =
Vo(¢) for ¢ € T arbitrary and { € P. Hence, P is non-empty and so is Q due to proposition 1—
completing the proof (cf. Harrison and Pliska (1981), pp. 228-229). O






GComplete Market Models

9.1 INTRODUCTION

Ever since the publication of the seminal works by Black, Scholes and Merton (BSM) in 1973
(cf. Black and Scholes (1973) and Merton (1973)), the BSM model—which is a continuous
market model—and associated option pricing formulas have been considered a benchmark for
option pricing. Benchmark in the sense that they provide closed-form solutions in a simple
but still somehow realistic setting. The original and famous formula is derived in the papers
on the basis of two different arguments. The first one in Black and Scholes (1973) is an
equilibrium argument saying that a risk-less portfolio should yield the risk-less interest rate
in equilibrium. The second, and rather widely applicable, one from Merton (1973) is that the
value of a (European) option should equal the value of a portfolio that, in combination with
an appropriate trading strategy, perfectly replicates the payoff at maturity. It is essentially the
key argument of the general arbitrage pricing theory presented in Chapter 4.

Several years later, in 1979, Cox, Ross and Rubinstein presented (cf. Cox et al. (1979))
their binomial option pricing model. This model assumes in principle a BSM economy but
in discrete time with discrete state space. Whereas the BSM model necessitates advanced
mathematics and the handling of partial differential equations (PDE), the CRR analysis relies
on fundamental probabilistic concepts only. Their representation of uncertainty by binomial
(recombining) trees is still today the tool of choice when one wishes to illustrate option topics
in a simple, intuitive way. Furthermore, their numerical approach allows not only European
options but also American options to be valued quite as easily.

The main characterizing feature of both market models is that they are complete: every
contingent claim maturing at some future date can be replicated by a trading strategy in the
two tradable assets available—a risky asset (e.g. an index or stock) and a risk-less bond. The
two models are also consistent in the sense that the CRR model converges to the BSM setup
when the time interval between two consecutive dates tends to zero.

This chapter presents in the next section the BSM model and some associated aspects of
the pricing theory. Section 5.3 analyzes how option prices and other quantities of interest react
to changes in the model parameters. The major topic is the so-called Greeks, i.e. the delta and
theta of an option, for example. Section 5.4 introduces the CRR model.

n
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9.2 BLACK-SCHOLES-MERTON MODEL

5.2.1 Market Model

We consider an economy MBY with final date 7,0 < T < co. Uncertainty in the economy is
represented by a filtered probability space {Q, F,F, P}. Q denotes the continuous state space,
F an o-algebra, [ a filtration—i.e. a family of non-decreasing c-algebras F = {F g 71} with
Fy = {0,Q} and F; = F—and P the real or objective probability measure.

Against this background, we model for 0 < ¢ < T the risk-neutral evolution of the relevant
stock index according to the stochastic differential equation (SDE)

ds
?[ = rdt + odZ, (5.1

t

S, denotes the index level at date #, r the constant risk-less short rate, ¢ the constant volatility
of the index and Z; a standard Brownian motion. Since we model an index instead of a single
stock, we abstract from dividend related modeling issues.! The stochastic process S generates
the filtration I, i.e. F, = F(Sp<s<;)-

The differential equation that a risk-less zero-coupon bond satisfies is

aB, _ dt (5.2)
B '

t

The time ¢ value of a zero-coupon bond paying one unit of currency at 7 with 0 < ¢ < T is
B/(T) = e~"T=) with B = 1.
It is well-known that the BSM model

MEM — ((Q P F, P}, T, {S,B}}

is complete and that the P-equivalent martingale measure Q is unique. Cf. Bjork (2004),
Theorems 8.3 and 10.17, for completeness and uniqueness of the risk-neutral measure Q,
respectively.

5.2.2 The Fundamental PDE

We are now interested in the value V of a contingent claim, say a European call option on
the index. We follow the analysis in Wilmott et al. (1995), sec. 3.5. Assume that the value
depends on the index level S and time ¢ only, i.e. V(S, ). Itd’s lemma, stated as proposition 5
in sub-section 5.6.1, gives the incremental change of the value V over time. Omitting time
subscripts, we get

ov 10%V , ov
dV = —dS + ———v°dt + —dt
as® 29 T o

"However, if the index would pay a continuous dividend yield of dy one would replace the risk-neutral
drift r by 7 = r — dy.
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From equation (5.1) we know dS and v = ¢S. Then

v = —(rSdt+anZ)+ LV ag2ar+ Vo
aS o
oV oV 1200V oV
= oWz + (s 4+ Ls2s d 53
7°9s ’+<r as+2 052 6t> (53)

Define now the delta of the contingent claim (think again of a European call option) by

57

Vi

A -
TS

and set up a portfolio ITy = V; — AyS,. In other words, a portfolio consisting of one option
long and A units of the index short. How does this portfolio evolve over time? Building on
equations (5.1) and (5.3)

drl = S (3—‘; - A)dz, + <r53—‘§ 41 252‘;7‘2’ + aa_‘z/ - rAS> di (5.4)

Recognizing the definition of A, (5.4) simplifies to

dll = 12520‘/ WV ar (5.5)
2 082 ' or

As a consequence of adding a delta short position, the portfolio becomes (locally) risk-less. To
avoid arbitrage, a risk-less portfolio must yield the risk-less short rate according to equation
(5.2). We must therefore have dI1 = rIldt as well. Equating this with (5.5)

ov 1 200V oV
V——)dt: 152020V OV
( aS (26 052 ot

and rearranging, we finally arrive at the famous and central BSM partial differential equation
(PDE)

» .
a§

1 5002V 9V
08—+ ——-rV=0 5.6
27°% 92 Ve 6.0
This equation holds for every contingent claim whose value V depends on S and ¢ only. This is
what makes it so important. It cannot be overemphasized that the whole argument hinges on
the assumption that the portfolio made up of the contingent claim and the short delta position
becomes risk-less. However, we are on quite safe ground due to the completeness of the market
model.



74 DERIVATIVES ANALYTICS WITH PYTHON

5.2.3 European Options

Although fundamentally of high importance, the BSM equation (5.6) is not the only reason
for the popularity of the BSM model.? It is also the fact that this PDE allows for an explicit,
i.e. analytical, solution in the case of European call and put options.

To this end, denote by C(S, 7) the value at time ¢ of a European call option on the index S
with payoff hg = max[S; — K, 0] where K > O is the fixed strike price. Obviously, by arbitrage
we have C(S,T) = hg such that we get a boundary condition, i.e. a final condition, for the PDE
(5.6). We also know that C(S = 0, r) = 0 since in this case the option will never show a positive
value at maturity. Finally, when S, — oo then C(S, ) ~ S, since K becomes negligible.

Taking one of a number of different routes,* one can show that the time ¢ value of the
European call option is

C(S.K,1,T,r,06) =S, -N(d,) —e ™D . K .N(d,) (5.7)
where
d 1
N(d) = —— / "1 dx
V2r /-
log 5y (r+ ”—2)(T— 3}
_ K 2
| =
oVT —t
log % +(r— %2)(T— )
d2 =
o\ T —t

To derive the corresponding formula for a European put option, one can apply put-call
parity. To this end, consider a portfolio of one unit of the index S long, one European put option
with strike K long and one European call option with the same strike short. The portfolio pays
at maturity T

S+P—-C=S5+max[K - S,0] — max[S — K, 0]
You now have to distinguish two cases. First, S < K. Then the payoff is S+ K - S =K.
Second, S > K. In this case, the payoff is § — S + K = K. Alas, the portfolio S + P — C pays

K for sure. To avoid arbitrage, the time ¢ value of the portfolio therefore must be

S,+P,—C ="K

ZRobert Merton and Myron Scholes received the Nobel Prize for economics in 1997 mainly for this
general approach to option pricing and its widespread applicability in mathematical finance. Cf. the
article by Robert Jarrow (Jarrow, 1999)—honoring the Nobel Prize winners and their theory—whose
title says “A Partial Differential Equation That Changed the World”.

30nce S, = 0, it will stay there according to equation (5.1).

4Cf. Wilmott et al. (1995), ch. 5, for a similarity solution approach to equation (5.6) or Bjork (2004),
ch. 7, for a risk-neutral/probabilistic approach.
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From this, the European put option value is given by
P,=C,—S,+e Tk (5.8)

We therefore have for a European put option with payoff h? = max[K — S7, 0] at maturity
the following BSM formula

P(S,1) = eI . K .N(=d,) = S, - N(=d,) (5.9)

In what follows we are mainly interested in European options. So speaking of an “option”
means a European option if not otherwise indicated. To get a better feeling of how the value
of an option depends on the model and option parameters, we analyze an example option with
the following parameters:

Sp = 100: initial index level

K = 100: strike price

T = 1.0: maturity in years

r = 0.05: risk-less short rate

o = 0.2: volatility of the index level
t = 0: valuation date, i.e. present date

The Python script in sub-section 5.6.2 implements the valuation formulas for the European
call option and put option, contains the above parameters and generates the graphical output
for the call version of the option as shown in Figure 5.1. Figure 5.2 shows the respective output
for the put option. Every sub-plot shows variations of the base case parameters with respect
to a single parameter only.

We can see the following in Figures 5.1 and 5.2:

1. moneyness: the at-the-money call (K = S, = 100, ATM) is worth about 10.4, much more
than the put which is worth about 5.6 only; the more the options become in-the-money
(K < 100 for the call, K > 100 for the put, ITM) the more they become worth; the opposite
is true the more the options come out-of-the-money (K > 100 for the call, K > 100 for
the put, OTM)

2. time-to-maturity: the higher the time-to-maturity the more the options are worth; there
are European options, however, for which this relationship does not necessarily hold (e.g.
deep ITM European put options)

3. short rate: an increase in the short rate increases the value of the call option and decreases
the value of the put option; under risk-neutrality the index drifts with the short rate and
the higher the drift the better for the call option (probability increases for ITM expiration)
and the worse for the put option (probability increases for OTM expiration)

4. volatility: a higher volatility increases both the value of the call and the value of the put
option since the probability for ITM expiration increases in both cases
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FIGURE 5.1 Value of the example European call option for varying strike K, maturity date 7, short
rate r and volatility o

9.3 GREEKS IN THE BSM MODEL

In particular for hedging and risk management purposes, it is of importance to know how option
values change with marginal changes in a model parameter. To derive the BSM equation (5.6),
a portfolio is set up that adds a short delta position to a long position in the option. The delta
A= a_v’ i.e. the first partial derivative of the option’s value with respect to the index level, is
one of the so-called Greeks (which refers to the Greek origin of the letter’s name).

The analytical valuation formula (5.7) allows closed-form expressions to be derived for
the most important Greeks as well. In what follows, we provide expressions for the Greeks of
a European call option. For the delta, we simply get (omitting time subscripts)

e

A= 35 - N(d;) (5.10)

The gamma is the second partial derivative with respect to the index level
_9’c _ Nd@)

_W_ So\/T —t

(5.11)



Complete Market Models 77

20.0
19.5] - Nevene b
19.0 e
@
=1
|
>
b= 18.51 B
jo
@
9
a : : : :
180 oot N
[ S ——————LRLSTGZSZM e
0 I I I I I I I 17.0 I I I |
80 85 90 95 100 105 110 115 120 0.0 0.2 0.4 0.6 0.8 1.0
strike K maturity 7'
22 B
2L e DN
DO N
© 1O et AN
=1
= : : :
B 18N
= : : : :
=
Q
S AT D
=
2 : : : :
LB NG
151 4
14 R f
I I I I 8 I I I |
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.1 0.2 0.3 0.4 0.5
short rate r volatility o

FIGURE 5.2 Value of the example European put option for varying strike K, maturity date 7, short
rate r and volatility o

The theta of an option is, by convention, the negative first partial derivative with respect
to time-to-maturity t* =T — ¢

oc _ SN'(d))o
or* 24T -1

The rho of an option is the first partial derivative with respect to the short rate r

re " T=DKN(d,) (5.12)

= ‘Z—C = K(T — t)e " T""N(d,) (5.13)
p

The vega—which is obviously not a Greek letter—is the first partial derivative with
respect to the volatility ¢

V= ‘;—C =SN'd)VT -1 (5.14)
o

Referring to Figure 5.1 and arguing graphically, the theta, rho and vega provide closed-
form expressions for the slope, given a certain parameter set, for three of the four sub-plots.
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delta(K, T)
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FIGURE 5.3 The delta of the European call option with respect to maturity date 7 and strike K

In the following, we provide plots of all the Greeks for the example call with different time-
to-maturities 7 and different strikes K. The Python script of sub-section 5.6.3 implements the
Greek formulas and generates the 3d plots.

Some observations are worth pointing out:

delta: Figure 5.3 shows that the delta of the call option varies both with moneyness
and maturity date T; it is between 1 and O for far ITM options and far OTM options,
respectively, with short maturity; delta changes most around the ATM level for short
maturities

gamma: Figure 5.4 shows that the gamma has the highest values around the ATM level
for short maturities; this is in line with the observation that delta changes most around the
ATM level

theta: Figure 5.5 paints a similar picture to gamma but with changed sign; theta is most
important around the ATM level and for short maturities

rho: Figure 5.6 illustrates that rho increases in importance with higher 7 (longer time-to-
maturity) and with moneyness from OTM to ATM to ITM

vega: Figure 5.7 shows vega increasing with 7 and decreasing from the ATM level in
both directions, i.e. OTM and ITM

It is worth pointing out that the shapes of the Greeks in the different figures partly depend on
the specific model parameters chosen and in particular on the option being a call. However,
gamma and vega are the same for the put option counterpart of the call. Furthermore, some
general remarks can be made:

1. short-term: most Greeks (delta, gamma, theta, vega) reach their highest/lowest values

around the ATM level, generally at short maturities (apart from vega)
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gamma(K, T)
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FIGURE 5.4 The gamma of the European call option with respect to maturity date 7 and strike K

2. long-term: for options with longer maturities only rho and vega have significant value
impact; this is due to their role in determining how probable it is that the option expires

IT™
In practice, option traders try to hedge one or several of the risks represented by the
Greeks. For example, traders speak of “delta neutral” or “vega hedged” positions which means
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FIGURE 8.8 The theta of the E